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1 Introduction

The origin of electroweak (EW) symmetry breaking is one of the most important research

topics in physics. With the progress of experiments at the Large Hadron Collider (LHC),

it is urgent for a theoretical understanding for the mechanism of the mass generation and

its relation to EW symmetry breaking. One appealing scenario for this mechanism is the

technicolour models [1, 2]. These models involve new asymptotically-free gauge theories

in which the coupling constants become strong at the TeV scale. The strong coupling can

induce condensates to generate mass gaps, and asymptotic freedom leads to the absence

of the naturalness problem. In order to dynamically suppress the flavour-changing neutral

currents (FCNC), and to evade the constraints from precision EW data, it is important

that the candidate theories exhibit the “walking” (quasi-conformal) behaviour and contain

large anomalous dimension for the technifermion mass term [3–5].
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In recent years, there has been a significant amount of work in search of gauge theories

viable for walking-technicolour model building. The most important task in this endeavour

is the determination of the critical number of massless fermions, given the gauge group

and the fermion representation, above which a theory is conformal in the infrared (IR). For

theories involving fermions in the fundamental representation, this is denoted as the critical

number of flavours, N cr
f . For N cr

f ≤ Nf < NAF
f (NAF

f is the number of flavours above

which asymptotic freedom is lost), the theory contains an infrared fixed point (IRFP).

A candidate walking-technicolour theory with fundamental fermions is believed to have

the number of flavours just below N cr
f . This makes the determination of N cr

f a task with

phenomenological significance, in addition to its importance in field-theoretic studies. Since

the couplings must be strong at low energies in these theories, nonperturbative methods,

such as the Schwinger-Dyson equation and gauge-gravity duality, have to be employed.

Amongst these, lattice gauge theory is the only first-principle tool, and has been applied

by many groups in this research avenue [6–47].1

Of all the theories which have been investigated using the lattice technique, the value of

N cr
f for SU(3) gauge theories with fundamental-representation fermions remains a contro-

versy. Although several groups [7–11, 26, 33, 46] found evidence that SU(3) gauge theory

with Nf = 12 is conformal in the IR, authors of refs. [34, 37] argued that chiral symme-

try is broken in this theory. In this paper, we report our study of this theory, using the

step-scaling method to compute the running coupling constant. We adopt the Twisted

Polyakov Loop (TPL) scheme [49–51]. This article complements the letter [6] which was

released in 2011 with other colleagues on this collaboration, and contains more details of

our simulations and improved analysis using more data. In ref. [6], we concentrated on the

analysis with the step size, s, set to 1.5, while here we emphasise the case in which s equals

two. Furthermore, in the improved analysis with new data, as presented in this paper, we

significantly reduce the correlation between data for the step-scaling functions on different

lattice volumes. This makes the continuum extrapolation simpler and better controlled,

compared to the analysis published in ref. [6]. We will discuss this in detail in section 5.3.

Related to this work and ref. [6], we have also published conference proceedings [52–54],

as well as for a similar project on SU(2) gauge theory with eight flavours [55].

In addition to computing the running coupling constant, we also obtain the ratio

between the step-scaling function and the coupling constant, which becomes one when the

β−function is zero. To claim the discovery of the IRFP in an asymptotically-free gauge

theory, we have to demonstrate that this ratio is indeed one in the ultraviolet (UV) and the

IR, while being obviously different from this value between these two regimes. Our study

suggests that SU(3) gauge theory with Nf = 12 contains an IRFP around the TPL-scheme

coupling constant,

g2∗ ∼ 2.0. (1.1)

Amongst systematic effects that we estimate, errors arising from the continuum extrapola-

tion dominate. We also notice that some of our procedures in performing this extrapolation

1There have also been many works on walking-technicolour model building using the gauge/gravity

duality, as reviewed in ref. [48].
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lead to weaker evidence for the existence of the IRFP. Details of the estimation of system-

atic errors will be presented in sections 5 and 6.

Our finding for the evidence of the existence of the IRFP agrees with the result of

refs. [7, 8], where the Schrödinger-functional (SF) scheme [56, 57] was used in defining the

coupling constant, and the calculation was performed using the same gauge and fermion

actions. The values of g∗ are different because of scheme dependence. Here we also stress

that the lattice artefacts can be very different in these two schemes. In particular, the SF

scheme contains O(a) (a is the lattice spacing) lattice artefacts through the introduction

of the boundary terms,2 while in the TPL scheme the lattice artefacts remain of O(a2),

making the continuum extrapolation more reliable.

This paper is organised in the following way. In section 2, we review twisted boundary

conditions and the Twisted Polyakov Loop scheme. Section 3 contains the details of our

simulation strategy and parameters. We describe our analysis procedure in section 5, give

our results and discussion in section 6, and conclude in section 7. Appendix A contains

the study of the eigenvalue spectrum of the Dirac operator used in this work. Values

of plaquette and the raw data for the TPL scheme coupling constants are presented in

appendix B.

2 Twisted Polyakov loop scheme

In this section, we give the details of our definition of the renormalised coupling constant

in the twisted-Polyakov-loop (TPL) scheme [50, 51]. This scheme makes use of twisted

boundary condition (TBC) [58], which is implemented on the link variables, Uµ(n̂) (µ =

x, y, z, t is the Lorentz index and n̂ is the position of a lattice site), through

Uµ(n̂+ ν̂Lν/a) = ΩνUµ(n̂)Ω
†
ν , (2.1)

where Lν is the (dimensionful) box size in the ν direction (with ν̂ denoting the unit vector),

and a is the lattice spacing. The “twisting matrices”, Ων , act in the colour space. In this

work, we apply TBC for ν = x, y, while maintaining periodic boundary condition (PBC)

for the other two directions. This means

Ωz = Ωt = 1. (2.2)

For SU(3), the twisting matrices, Ωx,y, satisfy

ΩxΩy = ei2π/3ΩyΩx,

ΩµΩ
†
µ = 1, (Ωµ)

3 = 1, Tr [Ωµ] = 0, for µ = x, y. (2.3)

In this work, we explicitly implement [59]

Ωx =







0 1 0

0 0 1

1 0 0






, Ωy =







e−2πi/3 0 0

0 e2πi/3 0

0 0 1






. (2.4)

2In refs. [7, 8], it was found that such O(a) lattice artefacts can be numerically very small.
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The inclusion of fermions is not straightforward when TBC, eq. (2.1), is imposed on

gauge fields. In order to maintain gauge invariance and single-valuedness of the fermion

field, ψ(n̂ + x̂Lx/a + ŷLy/a), under the application of two boundary twistings (in x̂ and

ŷ directions) with different orderings, it is necessary to introduce the “smell” degrees of

freedom [60]. This quantum number is carried by fermions. The number of smells, Ns,

is equal to the number of colours, Nc. Twisted boundary condition on fermion fields is

given by,

ψa
α(n̂+ ν̂Lν/a) = eiπ/3Ωab

ν ψ
b
β(n̂) (Ων)

†
βα , (2.5)

where a and b are colour indices, and the twisting matrices, Ωµ, have been generalised to act

on the smell degrees of freedom (indices α and β). The factor eiπ/3 is introduced only for

ν = x, y, to remove the zero-momentum modes in these directions. For ν = z, t directions,

we implement ordinary PBC, ψ(n̂ + ν̂Lν/a) = ψ(n̂). Since the smell quantum number

is not carried by the gauge fields, it can be considered as additional flavours. Therefore

the number of flavours in simulations involving dynamical fermions with TBC has to be a

multiple of Ns (=Nc).

The Polyakov loops in the twisted directions, ν = x, y, are

Px(n̂x, n̂y, n̂t) = Tr

([

∏

j

Ux (n̂x = j, n̂y, n̂z, n̂t)

]

Ωxe
i2πn̂ya/(3Ly)

)

,

Py(n̂x, n̂z, n̂t) = Tr

([

∏

j

Uy (n̂x, n̂y = j, n̂z, n̂t)

]

Ωye
i2πn̂xa/(3Lx)

)

. (2.6)

The extra factors outside the square brackets are introduced to maintain gauge and trans-

lation invariance. The renormalised coupling constant can be defined via the ratio between

correlators of Polyakov loops in the twisted and periodic directions,

〈Px(n̂t = 0)†Px(n̂t = Lt/(2a))〉
〈Pz(n̂t = 0)†Pz(n̂t = Lt/(2a))〉

= kḡ2latt, (2.7)

where Pz,t are ordinary Polyakov loops in the directions with PBC. In this study, we always

use hypercubic lattice Lx/a = Ly/a = Lz/a = Lt/a = L/a. The proportionality factor k

can be extracted by computing the above ratio in perturbation theory to O(g20), where g0
is the bare coupling constant. Using lattice perturbation theory, one obtains the lattice

version of this factor [6],

klatt = 0.03184 + 0.00453

(

a

L

)2

+O

[

(

a

L

)4
]

. (2.8)

The coupling, ḡlatt, defined in eq. (2.7) contains lattice artefacts, therefore depends on the

lattice spacing as well as the volume. Its continuum-limit counterpart at fixed physical

volume is defined as,

ḡc = lim
a→0

ḡlatt, at fixed L. (2.9)

The TPL scheme, as defined in eq. (2.7), contains the feature that the renormalised

coupling constant has the fixed value
√

1/k ∼ 5.6 in the IR limit (L → ∞). Therefore,
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in order to firmly establish the existence of the IR fixed point, we have to show that ḡc is

significantly different from this value at the fixed point.

Contrary to the SF scheme, the O(a) lattice artefacts are absent in the TPL scheme. As

explained in the following sections, it is important to control the continuum extrapolation

in the step-scaling study of the running coupling constant. This makes the use of the TPL

scheme very desirable. In section 5, we will show the lattice-spacing dependence of the

TPL-scheme coupling constant.

3 Simulation setting

We give the details of our lattice simulation in this section. As discussed in section 2, the

number of flavours in our calculation must be a multiple of Ns = Nc = 3. Since we are

using staggered fermions, it also has to be proportional to the number of tastes, Nt = 4.

In this work, we investigate the SU(3) gauge theory coupled to twelve flavours, which is

allowed by these constraints.

3.1 Step scaling

Our goal is to measure the evolution of the running coupling constant over a wide range

of scale. Given that the lattice imposes infrared (the volume) and ultraviolet (the lattice

spacing) scales, the most convenient way to achieve this goal is the step-scaling technique.

In this approach, we first measure the renormalised coupling constant, ḡlatt, on the lattice

in the scheme defined in eq. (2.7). Since we perform computation at vanishing fermion

mass, ḡlatt only depends on the lattice spacing and the lattice volume, L/a. Choosing a

few values of L/a, we then simulate at a wide range of β ≡ 6/g20, where g0 is the lattice bare

coupling constant. This enables us to tune β (lattice spacing) to obtain the renormalised

coupling in the continuum limit,

ḡc (L) = ḡlatt (β1, L/a1) = ḡlatt (β2, L/a2) = . . . = ḡlatt (βn0 , L/an0) , (3.1)

where n0 is the number of choices of L/a. Since ḡc is independent of the lattice spacing, it

is renormalised at the length scale L. In this work, we perform lattice simulations at

L/a = 6, 8, 10. (3.2)

Using the combinations of (β, L/a) which lead to the same ḡc(L) (or u = ḡ2c ), we

compute the lattice step-scaling function,

Σ (βi, L/ai, u, s) ≡ ḡ2latt (βi, sL/ai)|u=ḡ2latt(βi,L/ai)
, (3.3)

where i = 1, 2, . . . , n0 as in eq. (3.1), and s is the step size. Since we can obtain n0 results

for Σ at the same physical volume, L, with different lattice spacings, this allows us to

determine the continuum-limit step-scaling function,

σ (u, s) ≡ ḡ2c (sL)|u=ḡ2c (L)
= lim

a→0
Σ (βi, L/ai, u, s) . (3.4)

– 5 –
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In this work, we choose the step size s = 2, leading to the need for simulations performed

on the lattice volumes,

sL/a = 12, 16, 20, with s = 2. (3.5)

For convenience, we define

σ (u) ≡ σ (u, s = 2) . (3.6)

The step-scaling function is a scheme-dependent quantity, since it is simply the renor-

malised coupling constant computed at a certain scale. To facilitate a better method in

demonstrating the existence of the IRFP, we compute the ratio

rσ (u) ≡
σ (u)

u
. (3.7)

This ratio becomes one at the zeros of the β-function. The existence of such zeros is

independent of the renormalisation scheme used in the calculation. In order to show that

the gauge theory under investigation does contain an IR fixed point, we have to verify that

rσ(u) is one at both UV and IR regimes, while deviating from this value in between.

A major source of systematic errors in the step-scaling method is the continuum ex-

trapolation. It is a challenging task to properly address this issue. In order to have more

information regarding this extrapolation and its possible systematic effects, we also per-

form simulation with L/a = 14, and resort to an interpolation procedure to obtain data

for the TPL-scheme renormalised coupling on the lattice size L/a = 7. This enables us to

carry out the investigation with

(L/a = 6, 7, 8, 10) −→ (2L/a = 12, 14, 16, 20) . (3.8)

Here we stress that staggered fermions are used in this work, therefore it is not possible

to have data directly on the L/a = 7 lattice. The interpolation procedure for obtaining

such data is explained in detail in section 5.3. This interpolation in volume can introduce

systematic effects, although it may result in more information regarding the continuum

limit. Therefore, we only use the 4-point step-scaling analysis in eq. (3.8) as a means to

estimate errors in the continuum extrapolation.

3.2 Details of simulation parameters

Our calculation is performed using the Wilson plaquette action for the gauge fields, and

unimproved staggered fermions. We implement the standard Hybrid Monte Carlo (HMC)

algorithm using the Omelyan integrator with multi-time steps [61, 62]. To compute the

inversion of the lattice fermion operator, biCGstab solver with convergence condition that

the residue is smaller than 10−16 for molecular dynamics, and the accuracy of 10−24 for the

Metropolis tests, are used. A significant fraction of of our simulations were carried out on

Graphics Processing Units (GPU’s), where a mixed-precision solver with defect correction

was implemented. The GPU codes were developed with CUDA [63].

To thermalise configurations in the Markov chains, we have used two procedures. In

the first procedure, we start a simulation from a trivial gauge-field configuration

Uµ(n̂x, n̂y, n̂z, n̂t) = 1, (3.9)

– 6 –
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with fermion mass

amf ∼ 0.5. (3.10)

Then, we gradually decrease the mass to zero. In this process, we monitor the Polyakov

loops in the untwisted directions, and make certain that the imaginary parts are non-

vanishing. This ensures that the Markov chains progress mostly near the true vacua [6].

In the second procedure, we start with a configuration,

Uz(n̂x, n̂y, n̂z = 1, n̂t) = e−2iπ/3 , Ut(n̂x, n̂y, n̂z, n̂t = 1) = e+2iπ/3 , (3.11)

Uµ(n̂x, n̂y, n̂z, n̂t) = 1 elsewhere,

which always results in non-zero imaginary parts in the Polyakov loops in the untwisted

directions. It also produces the largest gap in the vicinity of zero in the fermion matrix.

In this case, we can start the simulation directly with zero fermion mass, making this

procedure significantly more efficient than the one implemented with the initial conditions

of eqs. (3.9) and (3.10). In both cases, we observe that the simulations always stay near

the true vacua, and tunnelling amongst these vacua occur occasionally. We will discuss

this issue in more detail in section 4.2.

In order to implement the step-scaling investigation of the running coupling constant

as discussed in section 3.1, we carry out simulations at the lattice volumes,

L/a = 6, 8, 10, 12, 14, 16, 20. (3.12)

For each volume, we simulate at several β values between 4 and 99, in the gauge action.

Since the running is expected to be slow in SU(3) gauge theory with twelve flavours, this

large range of β is necessary to trace the coupling constant from the UV to the IR regimes.

We aim at determining the Polyakov-loop correlators with statistical errors around 2.5%

or smaller. For this purpose, a significant amount of gauge-field ensembles have to be

generated. The raw data for the TPL-scheme renormalised coupling, as defined in eq. (2.7),

are given in appendix B.

4 Plaquette, Polyakov loop and the vacuum structure

In this work, we perform several detailed checks on the simulations, in order to ensure

that we are estimating the autocorrelation and performing the continuum extrapolations

reliably. These checks include the lowest-lying eigenvalue spectrum of the Dirac operator,

the plaquette values, and the phases of the Polyakov loops. The computation of the

lowest-lying eigenvalues is presented in appendix A, while in this section we address the

other two topics.

4.1 Plaquette

As shown in appendix B, some of our simulations are performed at small β values (coarse

lattice spacings). It is necessary to check that these simulations are still in the weak-

coupling phase, in order to make certain that at these β values, the theory is still in the

– 7 –



J
H
E
P
0
8
(
2
0
1
2
)
0
9
6

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18  0.2

1/Beta

Plaquette

L/a=6
L/a=8

L/a=10
L/a=12
L/a=14
L/a=16
L/a=20

WCE

-2e-05

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0.00014

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18  0.2

1/Beta

Plaquette - Fit Func(L/a=20)

L/a=6
L/a=8

L/a=10
L/a=12
L/a=14
L/a=16
L/a=20

Figure 1. Upper panel: The values of plaquette as a function of 1/β. “WCE” stands for “weak cou-

pling expansion”. Lower panel: The difference between the data points and the function, eq. (4.2),

fitted to the L/a = 20 data points only.

same universality class as that with high−β (fine lattice spacings). This is essential in

order to ensure that the continuum limit can be reliably taken in our calculations.

For the above purpose, we examine the expectation values of the plaquette for many

of our HMC simulations. The results are summarised in table 3 in appendix B. These

expectation values are plotted in the Upper panel of figure 1, where we also show the

predictions from the weak coupling expansion for pure Yang-Mills theory,

plaquette ≈ 1− 2

β
(weak coupling expansion). (4.1)

By comparing our data with this function, it is evident that all our simulations are in the

weak-coupling phase, and are safe from being in the novel phase observed in ref. [19].3

We have also studied the volume dependence of the plaquette, by first fitting the data

obtained on the largest lattice, L/a = 20, to a weak-coupling expansion formula (pi are

the fit parameters),

f(β) = p0 +
p1
β

+
p2
β2

+
p3
β3

+
p4
β4

+
p5
β5
, (4.2)

then computing the difference between the data points to this curve. The result of this

investigation is shown in the lower panel of figure 1. This shows that finite-size effects are

minor in the computation of the plaquette in this work.

3We thank David Schaich for private communications regarding this issue.
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Figure 2. Complex values (left panels) and the ratios between the real and imaginary parts (right

panels) for Polyakov loops in the twisted (upper panels) and untwisted (lower panels) directions,

in the first 25000 trajectories in the simulation performed at β = 11.15 and L/a = 16.

4.2 Polyakov loops and vacuum tunneling

The study of the plaquettes in the last section confirms that our simulations have been

carried out in the weak coupling phase. In this phase, as pointed out in ref. [6], the

true vacua in SU(3) gauge theory with fermions are always those in which the vacuum

expectation values of the Polyakov loops in the untwisted directions are non-vanishing and

complex. On the other hand, in the vicinity of the false vacua, the untwisted Polyakov

loops are real. As for the Polyakov loops in the twisted directions, we expect that they will

scatter around zero, configuration by configuration.

Markov chains in our simulations can be trapped in the false vacua. However, by using

the above property of the untwisted Polyakov loops, we can monitor the simulations and

ensure that they are mostly progressing near the true vacua.

Investigating the Polyakov loops trajectory by trajectory, we first confirm that in the

twisted directions, they are fluctuating around zero for all simulations in this work. This

is shown for two typical cases in the upper panels of figures 2 and 3.

Next, we study the Polyakov loops in the untwisted directions. In all our simulations,

their values are non-vanishing and complex in all trajectories. The complex phase fluctuates

around ±2π/3, indicating that the Markov chains are progressing near the true vacua. The

lower panels of figure 2 demonstrate a case (L/a = 16, β = 11.15) in which the simulation

stays near the vacuum with the phase of Polyakov loop being −2π/3. For simulations

performed at smaller L/a (fewer total degrees of freedom) and larger β (stronger coupling),
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Figure 3. Complex values (left panel) and the ratios between the real and imaginary parts (right

panel) for Polyakov loops in the twisted (upper panels) and untwisted (lower panels) directions, in

the first 25000 trajectories in the simulation performed at β = 5.53 and L/a = 8.
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Figure 4. Polyakov loop correlators in the twisted (left panel) and untwisted (right panel) di-

rections, in the first 25000 trajectories in the simulation performed at β = 5.53 and L/a = 8.

tunnelling between the two true vacua may occur. One of such cases is shown in the lower

panels of figure 3. Every time this takes place, we then investigate the Polyakov loop

correlators trajectory by trajectory, ensuring that these correlators do not exhibit any

“discontinuous” behaviour when the tunnelling happens. In figure 4, we show the result

of this study for the corresponding simulation presented in figure 3. From these plots

for the Polyakov loop correlators in the twisted and untwisted directions, we conclude

that tunnelling between the true vacua does not result in artefacts which complicate the

estimation of autocorrelation time.
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5 Analysis details

In this section, we explain the details of our analysis. The statistical analysis in this work is

performed using the bootstrap procedure, in which 1000 bootstrap samples are generated

for each (L/a, β).

5.1 Autocorrelation and data binning

As presented in appendix B, we perform our calculations with a large number of HMC

trajectories. The first step in our analysis is the binning of the raw data. In order to

make certain that the binning procedure is reasonable, we study the autocorrelation of

the ratio, appearing in the left-hand side of eq. (2.7), between the Polyakov loop correla-

tors. To describe our investigation, we start from the autocorrelation function of primary

quantities, [64–66]

Γα̂β̂(τ) =
1

N − τ

N−τ
∑

i=1

(

Oα̂(i)− Ōα̂

)

(

Oβ̂(i+ τ)− Ōβ̂

)

. (5.1)

Here, α̂ and β̂ label the types of primary quantities. In our case, O1(i) and O2(i) are

Polyakov loop correlators of the i-th sample in the twisted and in the periodic directions,

respectively. The quantity Ōα̂ is the average of Oα̂(i), Ōα̂ = (1/N)
∑N

i Oα̂(i).

By using Γα̂β̂ , the autocorrelation function of the Polyakov loop ratio, as in the left-

hand side of eq. (2.7), can be written as,

Γ(τ) =
2
∑

α̂,β̂=1

fα̂fβ̂Γα̂β̂(τ) (5.2)

with,

f1 =
∂

∂Ō1

(Ō1

Ō2

)

=
1

Ō2
, f2 =

∂

∂Ō2

(Ō1

Ō2

)

= −Ō1

Ō2
2

. (5.3)

We define the normalised autocorrelation function,

ρ(τ) =
Γ(τ)

Γ(0)
(5.4)

which is normally assumed to behave as,

ρ(τ) ∼ e
− τ

τA . (5.5)

The quantity τA is the autocorrelation time of single exponential autocorrelation.

Since the integrated autocorrelation function is less noisy than ρ(τ), we use it to esti-

mate the autocorrelation time between Polyakov-loop-correlator ratios. Upon integrating

over τ , we obtain

∫ τ

0
ρ(τ ′)dτ ′ ∼ τA

(

1− e−τ/τA
)

∼ τA when τ ≫ τA. (5.6)
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The single-exponential form in eq. (5.5) is often a poor approximation to ρ(τ), when the

system contains degrees of freedom that are characterised by very different autocorrelation

times. In general, the autocorrelation function can be multi-exponential,

ρ(τ) ∼
∑

k

ak e
−τ/τ

(k)
A with

∑

k

ak = 1. (5.7)

The integrated autocorrelation is

∫ τ

0
ρ(τ ′)dτ ′ ∼

∑

k

τ
(k)
A ak

(

1− e−τ/τ
(k)
A

)

. (5.8)

This function reaches a plateau
∑

k τ
(k)
A ak when τ ≫ τ

(k)
A for all k. We use this criteria

for the estimation of autocorrelation without explicitly determining τ
(k)
A and ak. A more

detailed study of autocorrelation times for conformal field theories will be reported in a

separate paper [67].

In our numerical calculation, the integrated autocorrelation is defined as,

Θ(τ) =
1

2
+

τ
∑

τ ′=1

ρ(τ ′). (5.9)

To estimate error in Θ(τ), we apply the Madras-Sokal formula [68],

(∆Θ(τ))2 =
4τ + 2

N
Θ(τ)2. (5.10)

Figure 5 shows Θ(τ) for the representative cases in this work. The separation between

two decorrelated trajectories can be estimated by investigating the plateau of Θ(τ). As

demonstrated in figure 5, this separation depends on the physical volume, L. It is around

20 on the smallest volumes, and about a few hundred to 1000 on the largest volumes.

In appendix B, we show the details for the numbers of HMC trajectories in our sim-

ulations. For each choice of (L/a, β), we divide the trajectories evenly into ∼ 200 bins

by averaging over them in each bin. These bins are then used to create 1000 bootstrap

samples. From the result presented in this section, it is evident that our bin sizes are large

enough compared to the autocorrelation times. This ensures that the data amongst these

bins are decorrelated. We have also confirmed this with the Jackknife analysis using these

and larger bin sizes. The statistical errors in this approach are almost the same as those

in our bootstrap analysis, and they are stable against the change of the bin sizes. Figure 6

shows some examples for this Jackknife check for the TPL-scheme renormalised coupling

computed at various β values on the L/a = 20 lattice. In this figure, each group of data

points contains the results of the jackknife analysis with the numbers of bins set to 100,

200 and 500. The red point in the centre of each group is the result of using 200 bins, as

chosen in our bootstrap procedure. The β values for the two blue points are slightly shifted

for the purpose of presentation. They correspond to choosing the numbers of bins to be

100 (left) and 500 (right). From these plots, it is apparent that having 200 bins leads to

enough trajectories in each bin, in order to correctly estimate statistical errors.
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Figure 5. Representative plots for the integrated autocorrelation of the ratio of Polyakov loop

correlators at various values of L/a and β. The physical volume increases from the top-left to the

right-bottom corners.

5.2 Interpolation in β (bare coupling constant)

In the step-scaling study of the running coupling constant, we first have to perform the

tuning of the β values in eq. (3.1), for the lattice volumes L/a = 6, 8, 10. In principle, this

can be achieved by repeatedly adjusting β and carrying out new simulations, until eq. (3.1)

is satisfied to high accuracy. As discussed at the end of section 3.1, we also want to obtain

the TPL-scheme renormalised coupling on the L/a = 7 lattice through interpolation in

volume, in order to estimate systematic errors in the continuum extrapolation. For this

purpose, one has to tune a different set of β values for L/a = 6, 8, 10 and interpolate to

L/a = 7 at each step of this tuning.

The above procedure is very time-consuming, and becomes impractical for studies in

which one has to trace the coupling constant across a large range of length scale. This
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Figure 6. Dependence of the TPL-scheme renormalised coupling on the number of bins at various

β values on the L/a = 20 lattice. Each group of data points contains the results of the jackknife

analysis with the numbers of bins set to 100, 200 and 500. The red point in the centre of each

group is the result of using 200 bins, as chosen in our bootstrap procedure. The β values for the

two blue points are slightly shifted for the purpose of presentation. They correspond to choosing

the numbers of bins to be 100 (left) and 500 (right).

is the case in the current work. Therefore we resort to a variation of the above method.

That is, we simulate at many β values for each L/a, and perform interpolations in β for

the renormalised coupling constant, volume by volume. The choices of these β values

are presented in appendix B. The use of this interpolation method inevitably introduces

systematic effects in our calculation. We will address this issue in this section.

Since we are simulating at a large range of bare coupling constant, it is a challenging

task to have a well-inspired interpolation function in β. One reasonable way to proceed

is to note that in the large−β (small bare-coupling) regime, one-loop perturbation theory

has to be valid, and therefore at fixed L/a,

ulatt ≡ ḡ2latt(β, L/a) ≈
6

β
= g20 (for β ≫ 1), (5.11)

where g0 is the bare gauge coupling. This motivates the use of polynomial functions in

1/β to perform the interpolation. Since we have data for many β values (see appendix B)

for each L/a, it is in principle possible to have high degrees of polynomials for these fits.

Such high-degree polynomials will generally fit all the data points. On the other hand, the

Runge phenomenon may occur in this procedure, resulting in artificial oscillatory behaviour

of the fit functions. In order to avoid this artefact in the β−interpolation, we note that the

renormalised coupling should always be non-decreasing with growing lattice spacing (i.e.,

decreasing β) at fixed L/a, otherwise the theory will be in the strong-coupling phase and

the continuum extrapolation cannot be reliably performed.

From our study of the plaquettes in section 4.1, it is evident that our simulations are

all carried out in the weak-coupling regime. This is also reflected on the data points plotted

in figure 7, in which we see that all our renormalised couplings, ulatt, are non-decreasing
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Figure 7. The renormalized coupling, ulatt, from the simulations on the L/a =

6, 8, 10, 12, 14, 16, 20 are shown by points with error bars. Fit functions, eq. (5.12), are shown

as curves.

when β decreases. This leads to the use of the non-decreasing polynomial,

ulatt = f(u0) =

∫

du0





Ndeg
∑

m=0

cmu
m
0





2

=

Nh
∑

n=0

hnu
n
0

(

where u0 ≡
1

β
=
g20
6

)

, (5.12)

in the β−interpolation procedure at fixed L/a. We implement the constraint from pertur-

bation theory, eq. (5.11), which results in,

h0 = 0, h1 = 6 (then c0 =
√
6). (5.13)

This constraint leads to the number of fit parameters,

Nparam = Ndeg =
Nh − 1

2
, (5.14)

where Ndeg and Nh are defined in eq. (5.12). The use of the non-decreasing polynomial

ansatz makes the Runge phenomenon milder compared to the simple polynomial fits. The

inverse of the fit function in eq. (5.12) is also single-valued. This is essential in the step-

scaling method. The results of applying this (uncorrelated) fitting procedure in the β

interpolation are shown in figure 7. The optimal choices of Nparam, leading to the best

(smallest) χ2/d.o.f., are listed in table 1.
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Non-decreasing Polynomial

L/a Nparam χ2/d.o.f.

6 7 1.654259

8 5 0.837240

10 5 0.828201

12 4 1.597743

14 4 2.498352

16 4 0.834323

20 7 0.685983

Simple Polynomial

L/a Ñparam χ2/d.o.f.

6 8 1.580600

8 11 0.652351

10 5 0.819650

12 4 1.612676

14 6 2.608492

16 4 0.837765

20 7 0.689820

Table 1. Left: The χ2/d.o.f. of the β interpolation using eq. (5.12). Nparam = Ndeg = Nh−1
2

is the number of fit parameters. Right: The χ2/d.o.f. of the β interpolation using eq. (5.15).

Ñparam = Ñdeg − 1 is the number of fit parameters.

In order to estimate systematic error resulting from the interpolation in β, we change

the fit function from eq. (5.12) to a simple polynomial function,

ulatt = f̃(u0) =

Ñdeg
∑

m=0

c̃mu
m
0 , (5.15)

with the constraint,

c̃0 = 0, c̃1 = 6. (5.16)

from the validity of perturbation theory at high−β. This constraint results in the number

of fit parameters,

Ñparam = Ñdeg − 1. (5.17)

The values of Ñparam for the best χ2/d.o.f. are presented in table 1.

5.3 Interpolation for L/a = 7

As indicated at the end of section 3.1, it is desirable to gain more information regarding

systematic errors in the continuum extrapolation. In view of the fact that our reference

input renormalised couplings are computed on L/a = 6, 8, 10, a practical way to proceed

is to have data for L/a = 7. This enables us to attempt the step-scaling study,

(L/a = 6, 7, 8, 10) −→ (sL/a = 12, 14, 16, 20), where s = 2, (5.18)

without having to perform simulations on large lattices, such as L/a = 24.

Since staggered fermions are used in this work, we have to use an interpolating proce-

dure to obtain ulatt for L/a = 7. To have a well-motivated method for this interpolation,

we resort to the β−function of the theory. It is well-established that the coupling constant

in SU(3) gauge theory with twelve flavours runs slowly compared to, e.g., QCD. This is
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Figure 8. The interpolation for obtaining the running coupling constant at L/a = 7 at two fixed

lattice spacings using eq. (5.20).

reflected on the fact that a small change in the renormalised coupling has to result from

a significant variation of the scale. As shown in figure 7, this is indeed the case. Namely,

enlarging the box size by a factor of two induces very little changes in ulatt, and one can

locally approximate the β−function using a linear form

L
dulatt
dL

= β(ulatt) ≈ al + bl ulatt, (5.19)

where al and bl are unknown parameters. We stress that this approximated form is not

based on perturbation theory, and is only valid within a small range of ulatt. That is, in

different ranges of ulatt, the parameters, al and bl, have different values.

To determine ulatt on the L/a = 7 lattice, we use our data on the L/a = 6, 8, 10, 12

lattices, and interpolate with the function,

ulatt = AL + CL

(

L

a

)BL

, (5.20)

at fixed lattice spacing. The unknown coefficients, AL, BL, and CL are related to al and bl,

and the integration constant in solving eq. (5.19). Figure 8 shows two representative plots

for the interpolation using eq. (5.20). It is obvious that the interpolation is smooth, and

the values of the coefficients, AL, BL, and CL, can vary significantly in different ranges of

ulatt. The fits presented in figure 8 are performed on the L/a = 6, 8, 10, 12 data without

β−interpolation.

Equations (5.19) and (5.20) are used to motivate an interpolation function in L/a at

fixed a (β value). However, the the effects of the lattice spacing can appear as powers

of (a/L)2 in our simulations. This means the data points used in each of this volume

interpolation may have different lattice artefacts, leading to systematic effects introduced

in this procedure. In view of this, we do not include the L/a = 7 data in our central analysis

procedure, and only use them to perform the step-scaling investigation in eq. (5.18) as a

means to estimate errors in the continuum extrapolation.

Another issue in this volume-interpolation method for obtaining the L/a = 7 data is

statistical correlation. The procedure is carried out using uncorrelated fits in this work.

However, it is natural to expect that there will be correlation between the L/a = 7 (interpo-

lated) data and those extracted directly from independent simulations on L/a = 6, 8, 10, 12.
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Figure 9. The likelihood function plotted against (u6, u7), (u8, u7), (u10, u7), and (u12, u7) at

β = 5.53. The dashed curves indicate the standard error ellipses.

This correlation has to be closely examined, since all these data are used in the investi-

gation of the continuum extrapolation, as discussed in section 5.4. For this purpose, we

study the likelihood function,

L(ui, uj) =
1

2π
√

det (Cov)
exp

{−1

2
(ui − ūi)

[

Cov−1
]

ij
(uj − ūj)

}

, (5.21)

where ui denotes ulatt computed on the lattice volume L/a = i. Here ui is kept as a

variable, and ūi is its central value for this quantity from our simulation. The symbol Cov

is the covariance matrix which can be computed from the bootstrap samples of ui and uj
obtained from numerical calculations.

Our investigation shows that, although the coupling constant on the L/a = 7 lattice

is interpolated using those on the L/a = 6, 8, 10, 12 lattices, it only shows significant

correlation with that on the L/a = 8 lattice. In figure 9, we display an example of this

likelihood-function study performed for β = 5.53. It is obvious from this figure that

coupling constants on L/a = 7 and L/a = 6, 10, 12 exhibit mild or very small correlation,

while it is the opposite between L/a = 7 and L/a = 8. The corresponding covariance
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matrices for the example in figure 9 are

Cov(β=5.53) =

(

0.000235 0.000104

0.000104 0.000999

)

for u6−u7,

Cov(β=5.53) =

(

0.005731 0.001473

0.001473 0.000999

)

for u8−u7,

Cov(β=5.53) =

(

0.005945 0.000776

0.000776 0.000999

)

for u10−u7,

Cov(β=5.53) =

(

0.005090 −0.000276

−0.000276 0.000999

)

for u12−u7. (5.22)

The volume, L/a = 7, is one of the “small” lattices, on which we compute the reference

coupling instead of the step-scaling function. The importance of the above study is the

demonstration that there is negligible correlation between data on this lattice and that on

the “large” lattice, L/a = 12, from which we compute the step-scaling function. Further-

more, the statistical errors of the data obtained on all our small lattices are small. In view

of this, it is reasonable to expect that this correlation between the L/a = 7 and L/a = 8

TPL coupling constants does not necessitate correlated fits in the continuum extrapolation.

The above study of the data correlation also leads to the conclusion that one has to be

very cautious about interpolating ulatt in L/a. In certain analysis procedures, such as the

one we adopted in ref. [6] by setting the step size to 1.5, large correlation amongst data

used in the continuum extrapolation can occur.

5.4 Continuum extrapolation for the step-scaling function

The last step in our analysis is the continuum extrapolation for the step-scaling function,

σ(u), defined in eqs. (3.4) and (3.6). Since unimproved staggered fermions and the Wil-

son plaquette action are used in this work, we will investigate (a/L)2 dependence in the

lattice step-scaling function, Σ(β, L/a, u, s = 2). In figure 10, this dependence is displayed

at representative values of u in the regimes of weak, intermediate and strong coupling.

From this figure, it is obvious that effects of the lattice artefacts grow with increasing

u, as expected. In the region u < 0.8, we see that the step-scaling functions show in-

significant dependence on the lattice spacing, and are almost consistent with the input

reference coupling. On the other hand, in the strong-coupling regime, the a−dependence

in Σ becomes noticeable, necessitating good control of the continuum extrapolation in the

investigation of the existence of the IRFP. It is worth noting that the lattice artefacts tend

to make the step-scaling function larger than its continuum-limit counterpart, especially

in the strong-coupling regime. This feature is different from what was discovered in the

Schödinger-functional scheme [7, 8].

In performing the continuum extrapolation for our central analysis procedure, we use

our simulation results for Σ(β, L/a, u, s = 2), obtained at sL/a = 12, 16, 20, and carry out

the linear fit (σl(u) and Al are the fit parameters),

Σ(β, L/a, u, s = 2) = σl(u) +Al(u)
( a

L

)2
, (5.23)
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Figure 10. Lattice-spacing dependence of the step-scaling function (SSF) in weak, intermediate

and strong coupling regimes (from the top). The horizontal lines indicate the central values of the

input reference u.

– 20 –



J
H
E
P
0
8
(
2
0
1
2
)
0
9
6

with the β−values for various L/a determined by tuning the coupling, u, to be the same

on the corresponding small lattices (L/a = 6, 8, 10). This procedure does not include the

L/a = 7 data which are extracted with an additional volume-interpolation, as detailed in

section 5.3.

To estimate systematic errors in the continuum extrapolation, we include the volume-

interpolated, L/a = 7 data, as well as the step-scaling functions computed on the lattice,

sL/a = 14. We first perform the quadratic fit (σq(u), Aq and Bq are the fit parameters),

Σ(β, L/a, u, s = 2) = σq(u) +Aq(u)
( a

L

)2
+Bq(u)

( a

L

)4
, (5.24)

to implement the 4-point step-scaling method in eq. (3.8).

In order to further account for systematic effects arising from the continuum extrapo-

lation, we perform two additional linear fits:

1. Using the data for the step-scaling functions from sL/a = 14, 16, 20 (L/a = 7, 8, 10).

2. Using the data for the step-scaling functions from sL/a = 12, 14, 16, 20 (L/a =

6, 7, 8, 10).

Figure 11 shows representative plots of the continuum extrapolation using the above pro-

cedures (quadratic fit and the three linear fits). From these plots, we observe that σl
and σq are well consistent with each other at intermediate and strong couplings. In the

weak-coupling regime (top row of figure 11), we notice that the quadratic fit, and the

3-point linear fit using the L/a = 7, 8, 10 data are not consistent with the other two pro-

cedures. They result in σ(u) smaller than u after the continuum extrapolation. However,

we stress that in this regime, the lattice step-scaling function, Σ, demonstrates very mild

lattice-spacing dependence, and is almost consistent with the input reference u. This is

the consequence of asymptotic freedom. Furthermore, our data do not show significant

O(a4) contributions in the continuum extrapolation at strong and intermediate couplings

(center and bottom rows of figure 11), where the lattice artefacts are expected to be larger

compared to the small−u region. In view of this, we conclude that the quadratic fit, and

the 3-point linear fit using the L/a = 7, 8, 10 data can be artificially amplifying statistical

fluctuations and leading to unreliable results in the weak-coupling regime. In order to

properly address this issue, one has to generate data with very high statistical accuracy

(e.g., < 0.5%) at large β values. This is beyond the scope of this work, since our main

focus is on the existence of the IRFP in the strong-coupling regime.

6 Final results and discussion

In this section, we present the final results of our analysis, and discuss the estimation of

systematic errors. We begin by showing the result from our central analysis procedure

for the ratio rσ = σ(u)/u, defined in eq. (3.7). In performing this central-procedure

analysis, we first interpolate in the bare coupling, β, for simulation data obtained at

L/a = 6, 8, 10, 12, 16, 20, using the non-decreasing polynomial function in eq. (5.12) with
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Figure 11. Representative cases of the continuum extrapolation for the step-scaling functions

using the procedures discussed in the main text. The 3-point linear extrapolation using data on

L/a = 6, 8, 10 is the central procedure. The horizontal lines indicate the central values of the input

reference u. As discussed in the main text, the quadratic fit, and the 3-point linear fit using the

L/a = 7, 8, 10 data can lead to unreliable results in the continuum limit in the weak-coupling regime

(top row).

the constraint from eq. (5.13), and the polynomial degrees and the numbers of fit param-

eters presented in table 1. We then carry out the step-scaling of

L/a = (6, 8, 10) −→ 2L/a = (12, 16, 20), (6.1)

by extrapolating the step-scaling function to the continuum limit with the linear form in

(a/L)2, eq. (5.23). Result of this central analysis is shown in figure 12, which demonstrates

evidence for the existence of an IRFP.

Next, we discuss the estimation of systematic effects arising from the β−value (bare-

coupling) interpolation and the continuum extrapolation. For this purpose, we perform

the changes in the central procedure. These changes are carried out independently, i.e., we

vary one component in the central procedure, while keeping the other fixed.
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Figure 12. rσ(u) from the central procedure.
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Figure 13. Plots for rσ(u) obtained from our procedures for estimating systematic errors. Top

left: rσ(u) from simple polynomial interpolation in β, eq. (5.15). Top right: rσ(u) by performing

the continuum extrapolation using quadratic function in (a/L)2. The rest is the same as the central

procedure. Bottom left: rσ(u) by performing the continuum extrapolation using linear function in

(a/L)2, with L/a = 7, 8, 10. Bottom right: rσ(u) by performing the continuum extrapolation using

linear function in (a/L)2, with L/a = 6, 7, 8, 10.
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We begin by varying the β−interpolation in the central procedure. This is carried out

by changing the non-decreasing fit function in eq. (5.12), to the simple polynomial form

in eq. (5.15) with the constraint of eq. (5.16) and the numbers of parameters reported in

table 1. The result of this procedure is shown in the top-left panel of figure 13.

In order to estimate systematic errors associate with the continuum extrapolation, we

perform various fits with the inclusion of the L/a = 7 and L/a = 14 data. First, we

perform the quadratic fit using eq. (5.24). This leads to the result for rσ(u) as depicted

in the top-right panel of figure 13. As expected, this extrapolation strategy results in

large statistical errors. In addition to the quadratic fit, we also carry out the two linear

continuum extrapolations discussed in section 5.4,

L/a = (7, 8, 10) −→ 2L/a = (14, 16, 20), (6.2)

L/a = (6, 7, 8, 10) −→ 2L/a = (12, 14, 16, 20).

The result from the first these procedures is presented in the bottom-left panel of figure 13,

while that from the second one is shown in the bottom-right panel of figure 13. As dis-

cussed at the end of section 5.4, the quadratic fit, and the 3-point linear fit using the

L/a = 7, 8, 10 data can lead to unreliable continuum extrapolations in the weak-coupling

regime. Therefore, in figure 13 we only show results at intermediate and large u for these

two procedures.

In figure 12, and in the top-left and the bottom-right plots in figure 13, it is observed

that these procedures lead to rσ(u) consistent with one in the UV and the IR, while

statistically different from this value between these two regimes. This suggests that there

exists an IRFP in SU(3) gauge theory with twelve flavours. However, the continuum

extrapolations using 4-point quadratic fit (the top-right plot in figure 13) and 3-point

linear fit without the L/a = 6 data (the bottom-left plot of figure 13) lead to weaker

evidence for the IR conformal behaviour. For these two procedures, in addition to the

difficulty in the continuum extrapolations in the weak-coupling regime (discussed at the

end of section 5.4), we also observe large errors in the IR regime, leading to no apparent

feature that rσ(u) crosses one. This phenomenon is actually the consequence of the “double

crossing” behaviour in some bootstrap samples. Namely, in these samples, rσ(u) crosses

one from above, and then turns around to cross the same value from below in a slightly

larger u. We stress that out of 1000 bootstrap samples we have created in this work,

rσ(u) in more than 680 (1σ) of them cross the unity from above in the IR regime, when

the continuum extrapolations are performed with the quadratic fit or the 3-point linear fit

without the L/a = 6 data. This leads to hints of the existence of an IRFP using these

analysis procedures. In order to illustrate this point, in figure 14 we plot 100 bootstrap

samples in the intermediate− and strong−u regions in these two procedures.

In table 2, we summarise the values of g2∗ obtained from the above procedures. Because

it is challenging to precisely estimate systematic effects, as discussed above, we take a

conservative approach to conclude that in SU(3) gauge theory with twelve flavours, our

data suggest the existence of an IRFP around,

g2∗ ∼ 2.0. (6.3)
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Figure 14. rσ(u) in 100 bootstrap samples from quadratic continuum extrapolation (left), and

3-point linear continuum extrapolation using the L/a = 7, 8, 10 data (right).

β interpolation continuum extrapolation g2∗

non-decreasing polynomial 3 point linear, L/a = 6, 8, 10 2.02(18)

simple Polynomial 3 point linear, L/a = 6, 8, 10 2.02(21)

non-decreasing polynomial 4 point linear 2.06(15)

non-decreasing polynomial 3 point linear, L/a = 7, 8, 10 > 1.66

non-decreasing polynomial 4 point quadratic > 1.62

Table 2. g2
∗
from various procedures. The first row describes the central procedure.

This result is similar to what we obtained with other collaborators using a different analysis

procedure [6] by setting the step size to be 1.5. Here we stress that it is more challenging

to control systematic effects and the correlation amongst data points in the procedure in

ref. [6], because of the need for many interpolations in lattice volumes when computing the

lattice step-scaling function, Σ.

The result in eq. (6.3) is much smaller than that obtained in the SF scheme [7, 8],

(

g
(SF)
∗

)2
∼ 4.5. (6.4)

The significant difference clearly indicates that the two schemes are very different. It

should also be noted that in the TPL scheme, there is an upper bound for the renormalised

coupling constant, as discussed in section 2. This may result in slower running behaviour

compared to the SF scheme.

7 Conclusion

In this paper, we present our work on the lattice study of IR behaviour in SU(3) gauge

theory with twelve flavours. We use the step-scaling method to investigate the running

coupling constant over a large range of scale. Our renormalisation scheme is defined via

the ratio of Polyakov loop correlators in the twisted and untwisted directions. In particular,
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we compute the ratio, rσ(u) defined in eq. (3.7), between the step-scaling function and the

input renormalised coupling. In our central analysis procedure, we perform the continuum

extrapolation using the 3-point linear fit with the reference coupling computed on the

L/a = 6, 8, 10 lattices. Data on these lattices are free of volume interpolation. Using this

procedure, we find that this theory contains an IRFP at around g2∗ ∼ 2.

In this work, we have investigated systematic errors in the bare coupling interpolation

for each lattice volume, and the continuum extrapolation. We have performed reason-

able variations on these interpolation and extrapolation, and carefully examined possible

correlation amongst data points used in the continuum extrapolation. We find that the

dominant systematic effect arises from the continuum extrapolation. To gain information

about possible errors in this extrapolation, we compute the step-scaling function on the

L/a = 14 lattice, obtain the reference input renormalised coupling for the L/a = 7 lattice

using an interpolation procedure, and then study the continuum limit using the 4-point

linear and quadratic fits, as well as the 3-point linear fit without the L/a = 6 data. We find

that all our analysis procedures result in evidence for the existence of an IRFP, although

the latter two continuum-extrapolation methods result in significant errors. In view of

this, the result of our work suggests that SU(3) gauge theory with twelve fermions in the

fundamental representation contains an IRFP.

Our finding shows that the conformal window for SU(3) gauge theories with funda-

mental fermions may lie below Nf = 12. Although this conclusion agrees with most other

studies [7–11, 26, 33, 46], the result in ref. [34, 37] leads to the opposite conclusion. Com-

bining this information with the recent result from the Nf = 10 calculation [12], this can

indicate that the Nf = 12 is already very close to the lower bound of the conformal window.
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Figure 15. Plots of the 16 lowest-lying positive eigenvalues (in lattice units) of the staggered

fermion operator in this work. The two plots show a coarse (left) and a fine (right) lattices of the

same physical volume. Each line in these plots connects the eigenvalues computed on the same

gauge configuration.

A Low-lying eigenvalues of the Dirac operator

To check the effects of taste-symmetry breaking in staggered fermions, we study positive

low-lying eigenvalues of the Dirac operator. In this section, we present a typical case of

taste-symmetry restoration when approaching the continuum limit at fixed physical volume.

For this purpose, we compare the following two cases:

1. L/a = 10, β = 20.13, in which ḡ2latt = 0.4031(76).

2. L/a = 20, β = 20.00, in which ḡ2latt = 0.4064(76).

The renormalised coupling for these two cases, as shown in the table for the raw data

in appendix B, are well consistent within statistical error. This means that the physical

volumes are almost the same, while the lattice spacing of the second case is half of that of

the first case.

In figure 15, we show the lowest-lying 16 eigenvalues on 10 gauge configurations for

each of the above two cases. Every line in these plots connects all the 16 eigenvalues in

one configuration. It is evident that on the finer lattice, the 4-fold degeneracy appears,

while it is much less clear for the coarser lattice. Although taste-symmetry restoration

appears on fine lattices in our work, from figure 15, it is indicated that such restoration

does not show up on the coarse lattices in our simulations. Such effects are expected, since

unimproved staggered fermions are implemented. This necessitates good control of the

continuum extrapolation, which is addressed in detail in section 5.4.

B Values of plaquette and TPL coupling constant raw data

In this appendix, we present details for the plaquette values and the TPL scheme renor-

malised coupling constants obtained at various lattice volumes, L/a, and bare couplings, β.

We also give the numbers of HMC trajectories for the computation of the TPL coupling.
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L/a β Plaquette

6 5.36 0.6048877(72)

6 5.53 0.6177253(79)

6 5.81 0.6371712(82)

6 6.12 0.6565360(71)

6 6.76 0.6906691(92)

6 7.82 0.7343932(75)

6 8.45 0.7549697(77)

6 9.42 0.7810709(57)

6 11.15 0.8160114(69)

6 13.85 0.8526629(54)

6 15.23 0.8662760(52)

6 17.55 0.8842610(44)

6 20.13 0.8992980(39)

L/a β Plaquette

8 5.36 0.604824(17)

8 5.53 0.6176221(88)

8 5.81 0.6370758(70)

8 6.12 0.6564552(52)

8 6.47 0.6760071(31)

8 6.76 0.6906010(54)

8 7.11 0.7065526(34)

8 7.82 0.7343407(47)

8 8.45 0.7549265(23)

8 9.42 0.7810425(38)

8 11.15 0.8159758(68)

8 13.85 0.8526510(50)

8 15.23 0.8662602(54)

8 17.55 0.8842492(48)

8 20.13 0.8992908(17)

L/a β Plaquette

10 5.36 0.604796(14)

10 5.53 0.6176175(64)

10 5.81 0.6370675(56)

10 6.12 0.6564540(48)

10 6.47 0.6759944(48)

10 6.76 0.6905794(18)

10 7.11 0.7065347(44)

10 7.82 0.7343367(29)

10 8.45 0.7549194(25)

10 9.42 0.7810298(27)

10 11.15 0.8159762(41)

10 13.85 0.8526444(36)

10 15.23 0.8662684(35)

10 17.55 0.8842406(33)

10 20.13 0.8992850(27)

L/a β Plaquette

12 5.36 0.6047811(33)

12 5.53 0.6176126(46)

12 5.81 0.6370591(35)

12 6.12 0.6564331(30)

12 6.47 0.6759845(26)

12 6.76 0.6905844(30)

12 7.11 0.7065395(26)

12 7.82 0.7343314(23)

12 8.45 0.7549160(17)

12 9.42 0.7810290(19)

12 11.15 0.8159771(21)

12 13.85 0.8526457(28)

12 15.23 0.8662619(28)

12 17.55 0.8842412(23)

12 20.13 0.8992891(19)

Table 3. [Part I] The expectation values of the plaquette in a significant fraction of our simulations.
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L/a β Plaquette

14 5.36 0.6047816(30)

14 5.53 0.6176160(32)

14 5.81 0.6370623(33)

14 6.12 0.6564415(30)

14 6.47 0.6759856(28)

14 6.76 0.6905864(26)

14 7.11 0.7065419(26)

14 7.82 0.7343298(22)

14 8.45 0.7549137(18)

14 9.42 0.7810323(17)

14 11.15 0.8159718(26)

14 13.85 0.8526501(22)

14 15.23 0.8662675(24)

14 17.55 0.8842430(19)

14 20.13 0.8992948(17)

L/a β Plaquette

16 5.36 0.6047781(27)

16 5.53 0.6176112(25)

16 5.81 0.6370620(24)

16 6.12 0.6564355(22)

16 6.47 0.6759890(19)

16 6.76 0.6905800(26)

16 7.11 0.7065370(18)

16 7.82 0.7343300(18)

16 8.45 0.7549165(11)

16 9.42 0.7810290(14)

16 11.15 0.8159751(21)

16 13.85 0.8526473(16)

16 15.23 0.8662636(14)

16 17.55 0.8842414(12)

16 20.13 0.8992913(11)

L/a β Plaquette

20 5.70 0.62965511(64)

20 6.00 0.6491829(14)

20 6.50 0.6775588(10)

20 7.00 0.7017067(25)

20 8.00 0.74055770(90)

20 9.00 0.77044016(58)

20 10.00 0.79413900(68)

20 12.00 0.82934963(65)

20 16.00 0.87281842(60)

20 18.00 0.88718074(65)

20 20.00 0.8986222(23)

20 50.00 0.9597892(11)

Table 3. [Part II] The expectation values of the plaquette in a significant fraction of our simulations.
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L/a β ḡ2latt # of traj.

6 4.00 2.885 ( 49 ) 69000

6 4.30 2.942 ( 38 ) 94000

6 4.50 2.808 ( 37 ) 108000

6 4.70 2.789 ( 38 ) 78000

6 5.00 2.716 ( 33 ) 96000

6 5.36 2.488 ( 10 ) 696720

6 5.50 2.434 ( 33 ) 72000

6 5.53 2.408 ( 11 ) 718616

6 5.81 2.248 ( 12 ) 530243

6 6.00 2.205 ( 26 ) 90000

6 6.12 2.143 ( 10 ) 603007

6 6.50 1.969 ( 30 ) 54000

6 6.76 1.869 ( 11 ) 306497

6 7.00 1.810 ( 27 ) 54000

6 7.82 1.530 ( 9 ) 383859

6 8.00 1.531 ( 19 ) 78000

6 8.45 1.348 ( 9 ) 289118

6 9.00 1.224 ( 16 ) 78000

6 9.42 1.144 ( 6 ) 389334

6 10.00 1.050 ( 14 ) 54000

6 11.15 0.8819 ( 60 ) 330175

6 12.00 0.7844 ( 69 ) 90000

6 13.85 0.6425 ( 33 ) 352374

6 14.00 0.6273 ( 47 ) 90000

6 15.23 0.5646 ( 28 ) 339500

6 16.00 0.5158 ( 32 ) 108000

6 17.55 0.4645 ( 18 ) 353866

6 18.00 0.4511 ( 30 ) 60000

6 20.00 0.3895 ( 21 ) 72000

6 20.13 0.3891 ( 16 ) 330238

6 50.00 0.1322 ( 5 ) 44250

L/a β ḡ2latt # of traj.

8 4.50 3.218 ( 51 ) 113000

8 4.70 3.098 ( 52 ) 85000

8 5.00 2.918 ( 57 ) 94250

8 5.36 2.692 ( 70 ) 42935

8 5.50 2.655 ( 50 ) 75500

8 5.53 2.676 ( 29 ) 471893

8 5.81 2.471 ( 21 ) 415827

8 6.00 2.382 ( 41 ) 95000

8 6.12 2.307 ( 17 ) 584764

8 6.47 2.136 ( 10 ) 129309

8 6.50 2.110 ( 31 ) 99000

8 6.76 2.004 ( 19 ) 356603

8 7.00 1.923 ( 22 ) 153000

8 7.11 1.842 ( 11 ) 720570

8 7.82 1.602 ( 13 ) 344514

8 8.00 1.571 ( 34 ) 63500

8 8.45 1.420 ( 7 ) 987652

8 9.00 1.280 ( 16 ) 130750

8 9.42 1.192 ( 10 ) 317269

8 10.00 1.073 ( 18 ) 72250

8 11.15 0.8978 ( 99 ) 164137

8 12.00 0.7919 ( 74 ) 126750

8 13.85 0.6522 ( 52 ) 190057

8 14.00 0.6492 ( 57 ) 95500

8 15.23 0.5733 ( 48 ) 170455

8 16.00 0.5284 ( 50 ) 78500

8 17.55 0.4660 ( 35 ) 166701

8 18.00 0.4565 ( 39 ) 83500

8 20.00 0.3910 ( 33 ) 111073

8 20.13 0.3908 ( 25 ) 188895

8 50.00 0.1308 ( 8 ) 49750

8 99.00 0.06368 ( 26 ) 59750

Table 4. [Part I] Raw data for the renormalised coupling in the TPL scheme.
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J
H
E
P
0
8
(
2
0
1
2
)
0
9
6

L/a β ḡ2latt # of traj.

10 4.50 3.600 ( 71 ) 220400

10 5.00 3.149 ( 62 ) 95000

10 5.36 2.823 ( 62 ) 89439

10 5.50 2.808 ( 53 ) 114800

10 5.53 2.785 ( 45 ) 177056

10 5.81 2.605 ( 42 ) 216874

10 6.00 2.477 ( 42 ) 130000

10 6.12 2.432 ( 33 ) 249705

10 6.47 2.219 ( 26 ) 307266

10 6.50 2.230 ( 42 ) 142400

10 6.76 2.090 ( 24 ) 305980

10 7.00 1.988 ( 26 ) 208000

10 7.11 1.960 ( 28 ) 256781

10 7.82 1.651 ( 16 ) 454309

10 8.00 1.613 ( 39 ) 68000

10 8.45 1.445 ( 13 ) 503970

10 9.00 1.351 ( 26 ) 80000

10 9.42 1.238 ( 15 ) 274746

10 10.00 1.128 ( 25 ) 83750

10 11.15 0.939 ( 17 ) 112614

10 12.00 0.821 ( 14 ) 80000

10 13.85 0.6563 ( 94 ) 83893

10 14.00 0.6363 ( 74 ) 120000

10 15.23 0.5672 ( 82 ) 91641

10 16.00 0.5359 ( 64 ) 88500

10 17.55 0.4741 ( 58 ) 88444

10 18.00 0.4517 ( 55 ) 74000

10 20.00 0.3825 ( 52 ) 49000

10 20.13 0.3977 ( 45 ) 85527

10 50.00 0.1334 ( 10 ) 65500

10 99.00 0.06387 ( 40 ) 39500

L/a β ḡ2latt # of traj.

12 4.50 3.64 ( 16 ) 154400

12 4.70 3.718 ( 99 ) 148300

12 5.00 3.249 ( 73 ) 160400

12 5.30 2.953 ( 60 ) 129700

12 5.36 3.029 ( 46 ) 272639

12 5.50 3.123 ( 65 ) 154700

12 5.53 2.951 ( 55 ) 233669

12 5.81 2.723 ( 44 ) 269109

12 6.00 2.510 ( 47 ) 167200

12 6.12 2.563 ( 38 ) 283205

12 6.47 2.278 ( 28 ) 330998

12 6.76 2.096 ( 32 ) 265744

12 7.00 2.058 ( 40 ) 146400

12 7.11 1.966 ( 27 ) 256821

12 7.82 1.671 ( 25 ) 262368

12 8.00 1.569 ( 30 ) 139200

12 8.45 1.471 ( 20 ) 397273

12 9.00 1.316 ( 22 ) 160500

12 9.42 1.264 ( 19 ) 256230

12 10.00 1.134 ( 22 ) 159000

12 11.15 0.914 ( 12 ) 173714

12 12.00 0.844 ( 15 ) 102000

12 13.85 0.673 ( 14 ) 79126

12 14.00 0.647 ( 13 ) 79200

12 15.23 0.589 ( 11 ) 75219

12 16.00 0.5467 ( 82 ) 84600

12 17.55 0.4658 ( 71 ) 85184

12 18.00 0.4463 ( 64 ) 90000

12 20.00 0.3928 ( 50 ) 86400

12 20.13 0.3982 ( 64 ) 83045

12 50.00 0.1315 ( 11 ) 65182

12 99.00 0.06386 ( 50 ) 36400

Table 4. [Part II] Raw data for the renormalised coupling in the TPL scheme.
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)
0
9
6

L/a β ḡ2latt # of traj.

14 5.36 3.295 ( 69 ) 199385

14 5.53 2.837 ( 75 ) 124117

14 5.81 2.675 ( 67 ) 125696

14 6.12 2.610 ( 72 ) 129106

14 6.47 2.287 ( 57 ) 128286

14 6.76 2.201 ( 56 ) 143854

14 7.11 2.125 ( 49 ) 140251

14 7.82 1.639 ( 37 ) 144056

14 8.45 1.536 ( 34 ) 169990

14 9.42 1.257 ( 30 ) 146017

14 11.15 0.909 ( 27 ) 50262

14 13.85 0.666 ( 15 ) 52658

14 15.23 0.612 ( 14 ) 52301

14 17.55 0.4683 ( 96 ) 53082

14 20.13 0.4036 ( 79 ) 49930

L/a β ḡ2latt # of traj.

16 5.30 3.065 ( 71 ) 321200

16 5.36 3.06 ( 11 ) 187232

16 5.50 2.950 ( 67 ) 256050

16 5.53 2.953 ( 83 ) 191286

16 5.70 2.851 ( 63 ) 235080

16 5.81 2.728 ( 70 ) 186009

16 6.12 2.490 ( 65 ) 183776

16 6.47 2.387 ( 44 ) 273140

16 6.50 2.259 ( 57 ) 286230

16 6.76 2.165 ( 66 ) 136446

16 7.11 1.997 ( 40 ) 244791

16 7.82 1.697 ( 47 ) 136365

16 8.00 1.725 ( 50 ) 141570

16 8.45 1.520 ( 24 ) 368201

16 9.00 1.379 ( 41 ) 114100

16 9.42 1.229 ( 28 ) 147603

16 11.15 0.964 ( 26 ) 72562

16 12.00 0.836 ( 17 ) 118000

16 13.85 0.700 ( 19 ) 70801

16 15.23 0.566 ( 13 ) 80752

16 16.00 0.5431 ( 89 ) 116000

16 17.55 0.4785 ( 100 ) 83657

16 18.00 0.469 ( 13 ) 40000

16 20.00 0.3902 ( 86 ) 44700

16 20.13 0.4135 ( 77 ) 79816

16 50.00 0.1327 ( 16 ) 60900

16 99.00 0.06326 ( 68 ) 28050

Table 4. [Part III] Raw data for the renormalised coupling in the TPL scheme.
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0
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2
)
0
9
6

L/a β ḡ2latt # of traj.

20 5.70 2.940(58) 1892896

20 6.00 2.663(67) 443775

20 6.50 2.401(54) 301480

20 7.00 2.108(45) 430782

20 8.00 1.725(38) 295316

20 9.00 1.450(33) 322420

20 10.00 1.187(24) 263795

20 12.00 0.8437(17) 258279

20 14.00 0.6450(14) 125942

20 16.00 0.5545(11) 155575

20 18.00 0.4565(80) 148488

20 20.00 0.4064(76) 123948

20 50.00 0.1352(12) 147168

Table 4. [Part IV] Raw data for the renormalised coupling in the TPL scheme.
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