79 research outputs found

    Going Too Far Is the Same as Falling Short: Kinesin-3 Family Members in Hereditary Spastic Paraplegia

    Get PDF
    Proper intracellular trafficking is essential for neuronal development and function, and when any aspect of this process is dysregulated, the resulting “transportopathy” causes neurological disorders. Hereditary spastic paraplegias (HSPs) are a family of such diseases attributed to over 80 spastic gait genes (SPG), specifically characterized by lower extremity spasticity and weakness. Multiple genes in the trafficking pathway such as those relating to microtubule structure and function and organelle biogenesis are representative disease loci. Microtubule motor proteins, or kinesins, are also causal in HSP, specifically mutations in Kinesin-I/KIF5A (SPG10) and two kinesin-3 family members; KIF1A (SPG30) and KIF1C (SPG58). KIF1A is a motor enriched in neurons, and involved in the anterograde transport of a variety of vesicles that contribute to pre- and post-synaptic assembly, autophagic processes, and neuron survival. KIF1C is ubiquitously expressed and, in addition to anterograde cargo transport, also functions in retrograde transport between the Golgi and the endoplasmic reticulum. Only a handful of KIF1C cargos have been identified; however, many have crucial roles such as neuronal differentiation, outgrowth, plasticity and survival. HSP-related kinesin-3 mutants are characterized mainly as loss-of-function resulting in deficits in motility, regulation, and cargo binding. Gain-of-function mutants are also seen, and are characterized by increased microtubule-on rates and hypermotility. Both sets of mutations ultimately result in misdelivery of critical cargos within the neuron. This likely leads to deleterious cell biological cascades that likely underlie or contribute to HSP clinical pathology and ultimately, symptomology. Due to the paucity of histopathological or cell biological data assessing perturbations in cargo localization, it has been difficult to positively link these mutations to the outcomes seen in HSPs. Ultimately, the goal of this review is to encourage future academic and clinical efforts to focus on “transportopathies” through a cargo-centric lens

    Material properties of a low contraction and resistivity silicon-aluminum composite for cryogenic detectors

    Full text link
    We report on the cryogenic properties of a low-contraction silicon-aluminum composite, namely Japan Fine Ceramics SA001, to use as a packaging structure for cryogenic silicon devices. SA001 is a silicon--aluminum composite material (75% silicon by volume) and has a low thermal expansion coefficient (\sim1/3 that of aluminum). The superconducting transition temperature of SA001 is measured to be 1.18 K, which is in agreement with that of pure aluminum, and is thus available as a superconducting magnetic shield material. The residual resistivity of SA001 is 0.065 μΩm\mathrm{\mu \Omega m}, which is considerably lower than an equivalent silicon--aluminum composite material. The measured thermal contraction of SA001 immersed in liquid nitrogen is L293KL77KL293K=0.12\frac{L_{293\mathrm{K}}-L_{77\mathrm{K}}}{L_{293\mathrm{K}}}=0.12%, which is consistent with the expected rate obtained from the volume-weighted mean of the contractions of silicon and aluminum. The machinability of SA001 is also confirmed with a demonstrated fabrication of a conical feedhorn array, with a wall thickness of 100 μm\mathrm{\mu m}. These properties are suitable for packaging applications for large-format superconducting detector devices.Comment: 8 pages, 4 figures, 1 table, accepted for the Journal of Low Temperature Physics for the LTD19 special issu

    A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes.

    Get PDF
    Blood-brain barrier (BBB) characteristics are induced and maintained by cross-talk between brain microvessel endothelial cells and neighbouring elements of the neurovascular unit. While pericytes are the cells situated closest to brain endothelial cells morphologically and share a common basement membrane, they have not been used in co-culture BBB models for testing drug permeability. We have developed and characterized a new syngeneic BBB model using primary cultures of the three main cell types of cerebral microvessels. The co-culture of endothelial cells, pericytes and astrocytes mimick the anatomical situation in vivo. In the presence of both pericytes and astrocytes rat brain endothelial cells expressed enhanced levels of tight junction (TJ) proteins occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. Further morphological evidence of the presence of interendothelial TJs was provided by electron microscopy. The transendothelial electrical resistance (TEER) of brain endothelial monolayers in triple co-culture, indicating the tightness of TJs reached 400Omegacm(2) on average, while the endothelial permeability coefficients (P(e)) for fluorescein was in the range of 3x10(-6)cm/s. Brain endothelial cells in the new model expressed glucose transporter-1, efflux transporters P-glycoprotein and multidrug resistance protein-1, and showed a polarized transport of rhodamine 123, a ligand for P-glycoprotein. To further characterize the model, drug permeability assays were performed using a set of 19 compounds with known in vivo BBB permeability. Good correlation (R(2)=0.89) was found between in vitroP(e) values obtained from measurements on the BBB model and in vivo BBB permeability data. The new BBB model, which is the first model to incorporate pericytes in a triple co-culture setting, can be a useful tool for research on BBB physiology and pathology and to test candidate compounds for centrally acting drugs

    Transcutaneous Electrical Nerve Stimulation on the PC-5 and PC-6 Points Alleviated Hypotension after Epidural Anaesthesia, Depending on the Stimulus Frequency

    Get PDF
    Neuraxial blockade causes arterial hypotension. Transcutaneous electrical nerve stimulation (TENS) at the Neiguan (PC-6) and Jianshi (PC-5) reduces the severity of hypotension after spinal anaesthesia, but did not clarify the optimal stimulus frequency. We hypothesized that the stimulus frequency of TENS at the PC-6 and PC-5 points would influence the severity of hypotension after epidural anaesthesia. 65 ASA I or II male patients presenting for inguinal hernia repair were randomized to five groups: the control group received no treatment; the 2 Hz, 10 Hz, 20 Hz, and 40 Hz groups received TENS at a frequency of 2 Hz, 10 Hz, 20 Hz, and 40 Hz, respectively. The lowest SBP was significantly higher in the 40 Hz group [the control, 84 (74–110) mmHg; the 2 Hz, 96 (62–116) mmHg; the 10 Hz, 100 (68–110) mmHg; the 20 Hz, 96 (64–115) mmHg; the 40 Hz, 104 (75–140) mmHg: P = 0.004]. Significantly less patients experienced hypotension in the 40 Hz group [the control, 78%; the 2 Hz, 43%; the 10 Hz, 38%; the 20 Hz, 38%; the 40 Hz, 8%: P = 0.008]. TENS on the PC-6 and PC-5 points reduced the severity and incidence of hypotension after epidural anaesthesia, depending on the stimulus frequency

    MAP Kinase Pathways in Brain Endothelial Cells and Crosstalk with Pericytes and Astrocytes Mediate Contrast-Induced Blood–Brain Barrier Disruption

    Get PDF
    Neurointervention with contrast media (CM) has rapidly increased, but the impact of CM extravasation and the related side effects remain controversial. This study investigated the effect of CM on blood–brain barrier (BBB) integrity. We established in vitro BBB models using primary cultures of rat BBB-related cells. To assess the effects of CM on BBB functions, we evaluated transendothelial electrical resistance, permeability, and tight junction (TJ) protein expression using immunohistochemistry (IHC) and Western blotting. To investigate the mechanism of iopamidol-induced barrier dysfunction, the role of mitogen-activated protein (MAP) kinases in brain endothelial cells was examined. We assessed the effect of conditioned medium derived from astrocytes and pericytes under iopamidol treatment. Short-term iopamidol exposure on the luminal side induced transient, while on the abluminal side caused persistent BBB dysfunction. IHC and immunoblotting revealed CM decreased the expression of TJ proteins. Iopamidol-induced barrier dysfunction was improved via the regulation of MAP kinase pathways. Conditioned medium from CM-exposed pericytes or astrocytes lacks the ability to enhance barrier function. CM may cause BBB dysfunction. MAP kinase pathways in brain endothelial cells and the interactions of astrocytes and pericytes mediate iopamidol-induced barrier dysfunction. CM extravasation may have negative effects on clinical outcomes in patients

    An In Vitro Model for Lewy Body-Like Hyaline Inclusion/Astrocytic Hyaline Inclusion: Induction by ER Stress with an ALS-Linked SOD1 Mutation

    Get PDF
    Neuronal Lewy body-like hyaline inclusions (LBHI) and astrocytic hyaline inclusions (Ast-HI) containing mutant Cu/Zn superoxide dismutase 1 (SOD1) are morphological hallmarks of familial amyotrophic lateral sclerosis (FALS) associated with mutant SOD1. However, the mechanisms by which mutant SOD1 contributes to formation of LBHI/Ast-HI in FALS remain poorly defined. Here, we report induction of LBHI/Ast-HI-like hyaline inclusions (LHIs) in vitro by ER stress in neuroblastoma cells. These LHI closely resemble LBHI/Ast-HI in patients with SOD1-linked FALS. LHI and LBHI/Ast-HI share the following features: 1) eosinophilic staining with a pale core, 2) SOD1, ubiquitin and ER resident protein (KDEL) positivity and 3) the presence of approximately 15–25 nm granule-coated fibrils, which are morphological hallmark of mutant SOD1-linked FALS. Moreover, in spinal cord neurons of L84V SOD1 transgenic mice at presymptomatic stage, we observed aberrant aggregation of ER and numerous free ribosomes associated with abnormal inclusion-like structures, presumably early stage neuronal LBHI. We conclude that the LBHI/Ast-HI seen in human patients with mutant SOD1-linked FALS may arise from ER dysfunction
    corecore