41 research outputs found
Regulation of heparin-binding EGF-like growth factor expression by phorbol ester in a human hepatoma-derived cell line
AbstractHeparin-binding EGF-like growth factor (HB-EGF) is a recently identified potent mitogen for smooth muscle cells and fibroblasts. HB-EGF has been shown to be an EGF receptor ligand, and also to stimulate epithelial cell growth. A human hepatoma-derived cell line, Mahlavu, was analyzed for the production of HB-EGF mRNA and active HB-EGF protein. It was found that the cell line synthesized very low or undetectable basal level of HB-EGF mRNA. However, the addition of 12-O-tetradecanoylphorbol-13-acetate (TPA) led to a rapid and transient rise in HB-EGF mRNA level. HB-EGF in Mahlavu cells appears to be regulated by a protein kinase C (PKC) pathway, since PKC inhibitors, H7, staurosporin, and calphostin C, abrogated the induction of HB-EGF mRNA by TPA. Unlike vascular smooth muscle cells, induction of HB-EGF gene transcription by TPA was blocked completely by incubation with cycloheximide, suggesting that protein synthesis may be a prerequisite for HB-EGF gene transcription in Mahlavu cells. Mahlavu cells were also found to release a bioactive HB-EGF-like protein into conditioned medium which stimulates DNA synthesis in EP170.7 cells. This activity was neutralized by an anti-HB-EGF antibody. These results indicate that HB-EGF gene transcription is regulated via a PKC pathway, resulting in secretion of active HB-EGF into the culture medium of hepatoma-derived Mahlavu cells
Nuclear translocation of the cytoplasmic domain of HB-EGF induces gastric cancer invasion
BACKGROUND: Membrane-anchored heparin-binding epidermal growth factor-like growth factor (proHB-EGF) yields soluble HB-EGF, which is an epidermal growth factor receptor (EGFR) ligand, and a carboxy-terminal fragment of HB-EGF (HB-EGF-CTF) after ectodomain shedding. We previously reported that HB-EGF-CTF and unshed proHB-EGF which has the cytoplasmic domain of proHB-EGF (HB-EGF-C), translocate from the plasma membrane to the nucleus and regulate cell cycle after shedding stimuli. However, the significance of nuclear exported HB-EGF-C in human gastric cancer is unclear. METHODS: We investigated the relationship between intracellular localization of HB-EGF-C and clinical outcome in 96 gastric cancer patients treated with gastrectomy. Moreover, we established stable gastric cancer cell lines overexpressing wild-type HB-EGF (wt-HB-EGF) and mutated HB-EGF (HB-EGF-mC), which prevented HB-EGF-C nuclear translocation after shedding. Cell motility between these 2 gastric cancer cell lines was investigated using a transwell invasion assay and a wound healing assay. RESULTS: Of the 96 gastric cancer cases, HB-EGF-C immunoreactivity was detected in both the nucleus and cytoplasm in 19 cases (19.8 %) and in the cytoplasm only in 25 cases (26.0 %). The nuclear immunoreactivity of HB-EGF-C was significantly increased in stage pT3/4 tumors compared with pT1/2 tumors (T1/2 vs. T3/4: 11.1 % vs. 36.4 %, P < 0.01). The growth of wt-HB-EGF- and HB-EGF-mC-expressing cells significantly increased compared with control cells, but the growth of HB-EGF-mC-expressing cells was significantly decreased compared with wt-HB-EGF-expressing cells. Gastric cancer cell invasion obviously increased in wt-HB-EGF-expressing cells, but invasion in HB-EGF-mC-expressing cells showed a slight increase compared with control cells. Moreover, wt-HB-EGF overexpression increased the effectiveness of wound healing, but had no significant effect in HB-EGF-mC-expressing cells. CONCLUSIONS: Both the function of HB-EGF as an EGFR ligand and a novel signal for HB-EGF-C nuclear translocation induce gastric cancer growth, whereas HB-EGF-C nuclear translocation independently plays a critical role in gastric cancer invasion. The present study demonstrated that HB-EGF-C nuclear translocation might be crucial in gastric cancer invasion. HB-EGF-C nuclear translocation may offer a prognostic marker and a new molecular target for gastric cancer therapy
Nuclear AREG affects a low‐proliferative phenotype and contributes to drug resistance of melanoma
Abstract
AMPHIREGULIN (AREG) is a multifaceted molecule, which acts not only as an extracellular ligand for EGF receptor (EGFR), but also as an intracellular signaling molecule. It remains elusive, however, whether AREG has a tumor suppressive or oncogenic role in melanoma. Here, we found that several melanoma cell lines express AREG, but the expression does not correlate with that of EGFR. Recombinant AREG and the neutralizing antibody experiments showed that intracellular AREG plays an important role in melanoma, implying a divergent function of AREG in addition to the role as a ligand for EGFR. Further investigation of this mechanism revealed that particularly nuclear‐localized AREG regulates IGF‐1R, P21 (Cip1/Waf1), TP53 and JARID1B protein accumulation in the nucleus. Furthermore, manipulation of nuclear AREG levels has influence on heterochromatin condensation (HP1beta, SETDB1) and trimethylation of histones H3K9 and H3K4. As these molecules correspond to previously identified markers for slow‐cycling drug resistant cells, we speculate that nuclear AREG predisposes cells to resistance to therapy. According to the hypothesis, we detected the accumulation of AREG in the nucleus of SK‐Mel‐28‐VR, which was cultured under Vemurafenib (VR) selection pressure, and this correlates with JARID1B expression. Here, knockdown of AREG makes the previously resistant cells more sensitive to VR treatment, resulting in inhibited proliferation. Taken together, we suggest that nuclear AREG affects a slow‐cycling phenotype and increases resistance to VR, raising a possibility that AREG might be a potential therapeutic target for resistance in melanoma
Akt kinase-interacting protein1, a novel therapeutic target for lung cancer with EGFR-activating and gatekeeper mutations
Despite initial dramatic response, epidermal growth factor receptor (EGFR) mutant lung cancer patients always acquire resistance to EGFR-tyrosine kinase inhibitors (TKIs). Gatekeeper T790M mutation in EGFR is the most prevalent genetic alteration underlying acquired resistance to EGFR-TKI, and EGFR mutant lung cancer cells are reported to be addictive to EGFR/Akt signaling even after acquired T790M mutation. Here, we focused on Akt kinase-interacting protein1 (Aki1), a scaffold protein of PI3K (phosphoinositide 3-kinase)/PDK1 (3-phosphoinositide-dependent protein kinase)/Akt that determines receptor signal selectivity for non-mutated EGFR, and assessed its role in EGFR mutant lung cancer with or without gatekeeper T790M mutation. Cell line-based assays showed that Aki1 constitutively associates with mutant EGFR in lung cancer cells with (H1975) or without (PC-9 and HCC827) T790M gatekeeper mutation. Silencing of Aki1 induced apoptosis of EGFR mutant lung cancer cells. Treatment with Aki1 siRNA dramatically inhibited growth of H1975 cells in a xenograft model. Moreover, silencing of Aki1 further potentiated growth inhibitory effect of new generation EGFR-TKIs against H1975 cells in vitro. Aki1 was frequently expressed in tumor cells of EGFR mutant lung cancer patients (53/56 cases), including those with acquired resistance to EGFR-TKI treatment (7/7 cases). Our data suggest that Aki1 may be a critical mediator of survival signaling from mutant EGFR to Akt, and may therefore be an ideal target for EGFR mutant lung cancer patients, especially those with acquired EGFR-TKI resistance due to EGFR T790M gatekeeper mutation.Oncogene advance online publication, 8 October 2012; doi:10.1038/onc.2012.446.In Press → 発行後6か月より全文を公開
Improved detectability of small-bowel lesions via capsule endoscopy with computed virtual chromoendoscopy: A pilot study
Objective. Real-time video capsule endoscopy (CE) with flexible spectral imaging color enhancement (FICE) improves visibility of small-bowel lesions. This article aims to clarify whether CE-FICE also improves detectability of small-bowel lesions. Patients and methods. A total of 55 patients who underwent CE at Hiroshima University Hospital during the period November 2009 through March 2010 were enrolled in the study. Five patients were excluded from the study because residues and transit delays prevented sufficient evaluation. Thus, 50 patients participated. Two experienced endoscopists (each having interpreted more than 50 capsule videos) analyzed the images. One interpreted conventional capsule videos; the other, blinded to interpretation of the conventional images, interpreted CE-FICE images obtained at settings 1-3 (setting 1: red 595 nm, green 540 nm, blue 535 nm; setting 2: red 420 nm, green 520 nm, blue 530 nm; setting 3: red 595 nm, green 570 nm, blue 415 nm). Lesions were classified as angioectasia, erosion, ulceration, or tumor. Detectability was compared between the two modalities. Time taken to interpret the capsule videos was also determined. Results. Seventeen angioectasias were identified by conventional CE; 48 were detected by CE-FICE at setting 1, 45 at setting 2, and 24 at setting 3, with significant differences at settings 1 and 2 (p = 0.0003, p < 0.0001, respectively). Detection of erosion, ulceration, and tumor did not differ statistically between conventional CE and CE-FICE, nor did interpretation time (conventional CE 36 ± 6.9 min; CE-FICE setting 1, 36 ± 6.4 min; setting 2, 38 ± 5.8 min; setting 3, 35 ± 6.7 min). Conclusions. CE-FICE is superior in the lesion detection in comparison with conventional CE and improves detection of angioectasia
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
Pharmacokinetics and pharmacodynamics of recombinant soluble thrombomodulin in disseminated intravascular coagulation patients with renal impairment
Recombinant human soluble thrombomodulin (TM-α) was recently developed as an anticoagulant for patients with disseminated intravascular coagulation (DIC). However, the pharmacokinetics and pharmacodynamics of TM-α in DIC patients with severe renal impairment have not yet been elucidated. We investigated the pharmacokinetics and pharmacodynamics of TM-α in DIC patients with severe renal impairment. Eleven DIC patients with the severe renal impairment (creatinine clearance (CLcr) <30 ml/min) and 10 DIC patients without severe renal impairment (CLcr ≥ 30 ml/min) were included in this study. In all patients, a dose of 380 U/kg of TM-α was administered during a 30 min infusion. Blood samples were taken before the start of the first TM-α administration, and at 0.5, 2, 4, 8, and 24 h after the start of administration. Although the clearance of TM-α in the patients with renal impairment was 80% of that in the patients without renal impairment, none of the pharmacokinetic values were significantly different between the groups. In the pharmacokinetic simulation, however, the trough levels of TM-α increased gradually in the patients with renal impairment when the same dose of TM-α was repeatedly administered. After the administration of TM-α, the prothrombinase activities in the patients in both groups were sufficiently inhibited during the observation period. Although the pharmacokinetic values in DIC patients with severe renal impairment were only slightly different from those in DIC patients without severe renal impairment, we need to pay attention to the elevation of the trough levels of TM-α when the same dose of TM-α is repeatedly administered
Efficient induction of inner ear hair cell-like cells from mouse ES cells using combination of Math1 transfection and conditioned medium from ST2 stromal cells
We sought to establish a more efficient technique for induction of inner ear hair cell-like cells (HC-like cells) from embryonic stem cells (ES cells) by using a combination of two previously reported methods; ST2 stromal cell-conditioned medium, known to be favorable for HC-like cell induction (HIST2 method), and ES cells with transfer of the Math1 gene (Math1-ES cells). Math1-ES cells carrying Tet-inducible Math1 were cultured for 14 days with doxycycline in conditioned medium from cultures of ST2 stromal cells following formation of 4-day embryoid bodies (EBs). Although each of the previously introduced methods have been reported to induce approximately 20% HC-like cells and 10% HC-like cells in their respective populations in EB outgrowths at the end of the culture periods, the present combined method was able to generate approximately 30% HC-like cells expressing HC-related markers (myosin6, myosin7a, calretinin, α9AchR, Brn3c), which showed remarkable formation of stereocilia-like structures. Analysis of expressions of marker genes specific for cochlear (Lmod3, Emcn) and vestibular (Dnah5, Ptgds) cells indicated that our HIST2 method may lead to induction of cochlear- and vestibular-type cells. In addition, continuous Math1 induction by doxycycline without use of the HIST2 method preferentially induced cochlear markers with negligible effects on vestibular marker induction
Predicting the absence of lymph node metastasis of submucosal invasive gastric cancer: Expansion of the criteria for curative endoscopic resection
Objective. The conditions upon which endoscopic resection (ER) can be considered curative for submucosal invasive gastric cancer remain controversial; thus, unnecessary surgery is sometimes performed after ER. Our purpose is to evaluate the significance of several clinicopathological factors for predicting the absence of lymph node (LN) metastasis of submucosal invasive gastric cancer and thus determining cases in which ER can be considered curative.
Patients and methods. The study group comprised 220 patients with submucosal invasive gastric cancer that was resected surgically or endoscopically. Patients treated by ER underwent additional surgical resection. The presence of LN metastasis was evaluated in all patients, retrospectively.
Results. LN metastasis was detected in 37 (16.8%) of the 220 patients. Independent risk factors for LN metastasis were width of submucosal invasion >6000 mu m, lymphatic involvement, undifferentiated type at the deepest invasive portion, depth of submucosal invasion >1000 mu m, and tumor diameter >30 mm. The group of 36 patients with submucosal invasion to a depth of <= 1000 mu m, tumor diameter <= 30 mm, differentiated type as the dominant histologic type, and absence of vessel involvement was entirely free of LN metastasis (95% confidence interval, 0-8.0%).
Conclusions. Taken together, the five independent risk factors may allow expansion of the criteria for determining whether ER for submucosal invasive gastric cancer has been curative
Identification of the simultaneous use of multiple hypnotics as a risk factor for falls in hospitalized patients by a matched case-control study.
AimThe risk of falls owing to simultaneous use of multiple hypnotics has not been clarified. The aim of this study was to assess the association between the simultaneous use of 2 hypnotics and the occurrence of falls in hospitalized patients.MethodsA matched case-control study was conducted at Tokyo Medical University Hospital in Tokyo, Japan, utilizing data from medical records. Cases were 434 hospitalized patients who experienced falls during their hospital stay between January 2016 and December 2016, and controls were 434 hospitalized patients without falls, individually matched by age, sex, and clinical department. The outcome was the occurrence of an in-hospital fall. The associations between the use of 1 hypnotic and falls, and between the use of 2 hypnotics and falls were assessed by conditional logistic regression analyses. The main multivariable conditional logistic regression model was adjusted for potential risk factors, including the use of other classes of psychotropics (antipsychotics, antidepressants, and anxiolytics), in addition to patient characteristics.ResultsThe main multivariable conditional logistic regression analyses showed that the simultaneous use of 2 hypnotics (odds ratio [OR] = 2.986; 95% confidence interval [CI], 1.041-8.567), but not the use of a single hypnotic (OR = 1.252; 95% CI, 0.843-1.859), was significantly associated with an increased OR of falls.ConclusionThe simultaneous use of 2 hypnotics is a risk factor for falls among hospitalized patients, whereas the use of a single hypnotic may not