112 research outputs found

    Berberine and palmatine inhibit the growth of human rhabdomyosarcoma cells

    Get PDF
    Published online: 29 Aug 2019A natural isoquinoline alkaloid, berberine, has been known to exhibit anti-tumor activity in various cancer cells via inducing cell cycle arrest. However, it has not been investigated whether berberine and its analogs inhibit the growth of rhabdomyosarcoma (RMS), which is the most frequent soft tissue tumor in children. The present study examined the anti-tumor effects of berberine and palmatine on expansions of three human embryonal RMS cell lines; ERMS1, KYM1, and RD. Intracellular incorporation of berberine was relatively higher than that of palmatine in every RMS cell line. Berberine significantly inhibited the cell cycle of all RMS cells at G(1) phase. On the other hand, palmatine only suppressed the growth of RD cells. Both of berberine and palmatine strongly inhibited the growth of tumorsphere of RD cells in three-dimensional culture. These results indicate that berberine derivatives have the potential of anti-tumor drugs for RMS therapy.ArticleBIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY. 84(1):63-75 (2020)journal articl

    Identification of the Myogenetic Oligodeoxynucleotides (myoDNs) That Promote Differentiation of Skeletal Muscle Myoblasts by Targeting Nucleolin

    Get PDF
    Herein we report that the 18-base telomeric oligodeoxynucleotides (ODNs) designed from the Lactobacillus rhamnosus GG genome promote differentiation of skeletal muscle myoblasts which are myogenic precursor cells. We termed these myogenetic ODNs (myoDNs). The activity of one of the myoDNs, iSN04, was independent of Toll-like receptors, but dependent on its conformational state. Molecular simulation and iSN04 mutants revealed stacking of the 13–15th guanines as a core structure for iSN04. The alkaloid berberine bound to the guanine stack and enhanced iSN04 activity, probably by stabilizing and optimizing iSN04 conformation. We further identified nucleolin as an iSN04-binding protein. Results showed that iSN04 antagonizes nucleolin, increases the levels of p53 protein translationally suppressed by nucleolin, and eventually induces myotube formation by modulating the expression of genes involved in myogenic differentiation and cell cycle arrest. This study shows that bacterial-derived myoDNs serve as aptamers and are potential nucleic acid drugs directly targeting myoblasts.ArticleFRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY. 8:616706 (2021)journal articl

    Myogenetic oligodeoxynucleotide complexed with berberine promotes differentiation of chicken myoblasts

    Get PDF
    Myoblasts are myogenic precursors that develop into myotubes during muscle formation. Improving efficiency of myoblast differentiation is important for advancing meat production by domestic animals. We recently identified novel oligodeoxynucleotides (ODNs) termed myogenetic ODNs (myoDNs) that promote the differentiation of mammalian myoblasts. An isoquinoline alkaloid, berberine, forms a complex with one of the myoDNs, iSN04, and enhances its activities. This study investigated the effects of myoDNs on chicken myoblasts to elucidate their species-specific actions. Seven myoDNs (iSN01-iSN07) were found to facilitate the differentiation of chicken myoblasts into myosin heavy chain (MHC)-positive myotubes. The iSN04-berberine complex exhibited a higher myogenetic activity than iSN04 alone, which was shown to enhance the differentiation of myoblasts into myotubes and the upregulated of myogenic gene expression (MyoD, myogenin, MHC, and myomaker). These data indicate that myoDNs promoting chicken myoblast differentiation may be used as potential feed additives in broiler diets.ArticleAnimal Science Journal. 92(1) : e13597 (2021)journal articl

    EGFR Mutations in NSCLC treated with Afatinib

    Get PDF
    Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors such as afatinib are used for non-small cell lung cancer (NSCLC) and show varying efficacy depending on EGFR gene mutation. Few studies have examined the relationship between EGFR gene mutations and the adverse events of afatinib in NSCLC. This retrospective study included 32 Japanese patients with NSCLC with EGFR gene mutation who were treated with afatinib between May 2014 and August 2018 at Kagawa University Hospital. Among the 32 Japanese patients with NSCLC treated with afatinib, 19 patients were positive for exon 19 deletion mutation (Del 19) and 13 patients were negative for Del 19. The incidence of grade ≥ 2 skin rash was slightly higher in patients positive for Del 19 (42.1% vs. 7.7%, P = 0.050). No significant differences were detected in other adverse events between the two patient groups. Patients positive for Del 19 also showed significantly longer median progression-free survival (288 vs. 84 days, P = 0.049). Our study indicates a higher incidence of skin rash associated with afatinib treatment in Japanese patients with NSCLC positive for Del 19 compared with patients without Del 19. The Del 19 positive patient group also showed better progression-free survival

    Distinct cell proliferation, myogenic differentiation, and gene expression in skeletal muscle myoblasts of layer and broiler chickens

    Get PDF
    Myoblasts play a central role during skeletal muscle formation and growth. Precise understanding of myoblast properties is thus indispensable for meat production. Herein, we report the cellular characteristics and gene expression profiles of primary-cultured myoblasts of layer and broiler chickens. Broiler myoblasts actively proliferated and promptly differentiated into myotubes compared to layer myoblasts, which corresponds well with the muscle phenotype of broilers. Transcriptomes of layer and broiler myoblasts during differentiation were quantified by RNA sequencing. Ontology analyses of the differentially expressed genes (DEGs) provided a series of extracellular proteins as putative markers for characterization of chicken myogenic cells. Another ontology analyses demonstrated that broiler myogenic cells are rich in cell cycle factors and muscle components. Independent of these semantic studies, principal component analysis (PCA) statistically defined two gene sets: one governing myogenic differentiation and the other segregating layers and broilers. Thirteen candidate genes were identified with a combined study of the DEGs and PCA that potentially contribute to proliferation or differentiation of chicken myoblasts. We experimentally proved that one of the candidates, enkephalin, an opioid peptide, suppresses myoblast growth. Our results present a new perspective that the opioids present in feeds may influence muscle development of domestic animals.Articlejournal articl

    ニホン ノ シュウマツキ イリョウ ニ タズサワル リンショウ カンゴシ ニ ヨル シュウマツキ カンゴ キョウイク コンソーシアム ELNEC End-of-Life Nursing Education Consortium ノ キョウイク プログラム オ モチイタ シュウマツキ カンゴ リンリ キョウイクホウ ノ ヒョウカ

    Get PDF
    Background. The need of a systematic program for teaching nursing ethics for clinical nurses was suggested repeatedly in earlier researches, but there is no existing research to evaluate teaching strategies in Japan. Aim. To illustrate the evaluation for teaching strategies of ethical issues in End-of-Life care utilizing ELNEC Module 4 by clinical nurses working in a Japanese palliative care setting. Methods. Teaching intervention, focus group interview, and qualitative methods of data collection and analysis were used. Findings. Evaluation for our teaching strategies comprised two main themes: general evaluations and problems of the teaching strategies utilizing ELNEC Module 4, and its impacts on nurses’ attitude, confidence, and self-awareness. Primary factors for the problems of our teaching strategies are; wordings of ethical terms and the order of the case study. Our strategies appeared to be an effective motivation for nurses to improve their practice, and might guide them to seek ethically sound practice. Conclusions. The case study helped participants’ active involvements to group discussions for case studies. They had chance to apply their knowledge of nursing ethics gained from the lecture of this study to their discussion in finding solutions to ethical dilemmas of the case that is given, and it is thought that their efforts made the knowledge, gained from a teaching session, settled in place

    Establishment of an antibody specific for cancer-associated haptoglobin: a possible implication of clinical investigation

    Get PDF
    We previously found that the serum level of fucosylated haptoglobin (Fuc-Hpt) was significantly increased in pancreatic cancer patients. To delineate the mechanism underlying this increase and develop a simple detection method, we set out to generate a monoclonal antibody (mAb) specific for Fuc-Hpt. After multiple screenings by enzyme-linked immunosorbent assay (ELISA), a 10-7G mAb was identified as being highly specific for Fuc-Hpt generated in a cell line as well as for Hpt derived from a pancreatic cancer patient. As a result from affinity chromatography with 10-7G mAb, followed by lectin blot and mass spectrometry analyses, it was found that 10-7G mAb predominantly recognized both Fuc-Hpt and prohaptoglobin (proHpt), which was also fucosylated. In immunohistochemical analyses, hepatocytes surrounding metastasized cancer cells were stained by the 10-7G mAb, but neither the original cancer cells themselves nor normal hepatocytes exhibited positive staining, suggesting that metastasized cancer cells promote Fuc-Hpt production in adjacent hepatocytes. Serum level of Fuc-Hpt determined with newly developed ELISA system using the 10-7G mAb, was increased in patients of pancreatic and colorectal cancer. Interestingly, dramatic increases in Fuc-Hpt levels were observed at the stage IV of colorectal cancer. These results indicate that the 10-7G mAb developed is a promising antibody which recognizes Fuc-Hpt and could be a useful diagnostic tool for detecting liver metastasis of cancer.This study was performed as a research program of the Project for Development of Innovative Research on Cancer Therapeutics (P-Direct), Ministry of Education, Culture, Sports, Science and Technology of Japan and was supported by JSPS KAKENHI Grant Number JP16H05226

    Staphylococcus aureus requires cardiolipin for survival under conditions of high salinity

    Get PDF
    BackgroundThe ability of staphylococci to grow in a wide range of salt concentrations is well documented. In this study, we aimed to clarify the role of cardiolipin (CL) in the adaptation of Staphylococcus aureus to high salinity.ResultsUsing an improved extraction method, the analysis of phospholipid composition suggested that CL levels increased slightly toward stationary phase, but that this was not induced by high salinity. Deletion of the two CL synthase genes, SA1155 (cls1) and SA1891 (cls2), abolished CL synthesis. The cls2 gene encoded the dominant CL synthase. In a cls2 deletion mutant, Cls1 functioned under stress conditions, including high salinity. Using these mutants, CL was shown to be unnecessary for growth in either basal or high-salt conditions, but it was critical for prolonged survival in high-salt conditions and for generation of the L-form.ConclusionsCL is not essential for S. aureus growth under conditions of high salinity, but is necessary for survival under prolonged high-salt stress and for the generation of L-form variants

    Increased Systemic Glucose Tolerance with Increased Muscle Glucose Uptake in Transgenic Mice Overexpressing RXRγ in Skeletal Muscle

    Get PDF
    BACKGROUND: Retinoid X receptor (RXR) γ is a nuclear receptor-type transcription factor expressed mostly in skeletal muscle, and regulated by nutritional conditions. Previously, we established transgenic mice overexpressing RXRγ in skeletal muscle (RXRγ mice), which showed lower blood glucose than the control mice. Here we investigated their glucose metabolism. METHODOLOGY/PRINCIPAL FINDINGS: RXRγ mice were subjected to glucose and insulin tolerance tests, and glucose transporter expression levels, hyperinsulinemic-euglycemic clamp and glucose uptake were analyzed. Microarray and bioinformatics analyses were done. The glucose tolerance test revealed higher glucose disposal in RXRγ mice than in control mice, but insulin tolerance test revealed no difference in the insulin-induced hypoglycemic response. In the hyperinsulinemic-euglycemic clamp study, the basal glucose disposal rate was higher in RXRγ mice than in control mice, indicating an insulin-independent increase in glucose uptake. There was no difference in the rate of glucose infusion needed to maintain euglycemia (glucose infusion rate) between the RXRγ and control mice, which is consistent with the result of the insulin tolerance test. Skeletal muscle from RXRγ mice showed increased Glut1 expression, with increased glucose uptake, in an insulin-independent manner. Moreover, we performed in vivo luciferase reporter analysis using Glut1 promoter (Glut1-Luc). Combination of RXRγ and PPARδ resulted in an increase in Glut1-Luc activity in skeletal muscle in vivo. Microarray data showed that RXRγ overexpression increased a diverse set of genes, including glucose metabolism genes, whose promoter contained putative PPAR-binding motifs. CONCLUSIONS/SIGNIFICANCE: Systemic glucose metabolism was increased in transgenic mice overexpressing RXRγ. The enhanced glucose tolerance in RXRγ mice may be mediated at least in part by increased Glut1 in skeletal muscle. These results show the importance of skeletal muscle gene regulation in systemic glucose metabolism. Increasing RXRγ expression may be a novel therapeutic strategy against type 2 diabetes

    Surgical Treatment for Colorectal Cancer Partially Restores Gut Microbiome and Metabolome Traits

    Get PDF
    Accumulating evidence indicates that the gut microbiome and metabolites are associated with colorectal cancer (CRC). However, the influence of surgery for CRC treatment on the gut microbiome and metabolites and how it relates to CRC risk in postoperative CRC patients remain partially understood. Here, we collected 170 fecal samples from 85 CRC patients pre- and approximately 1 year post-surgery and performed shotgun metagenomic sequencing and capillary electrophoresis-time of flight mass spectrometry-based metabolomics analyses to characterize alterations between pre- and postsurgery. We determined that the relative abundance of 114 species was altered postsurgery (P IMPORTANCE The gut microbiome and metabolites are associated with CRC progression and carcinogenesis. Postoperative CRC patients are reported to be at an increased CRC risk; however, how gut microbiome and metabolites are related to CRC risk in postoperative patients remains only partially understood. In this study, we investigated the influence of surgical CRC treatment on the gut microbiome and metabolites. We found that the CRC-associated species Fusobacterium nucleatum was decreased postsurgery, whereas carcinogenesis-associated DCA and its producing species and genes were increased postsurgery. We developed methods to estimate postoperative CRC risk based on the gut microbiome and metabolomic compositions. We applied methods to compare the estimated CRC risk between two groups according to the presence of large adenoma or tumors after 5 years postsurgery. To our knowledge, this study is the first report on differences between pre- and postsurgery using metagenomics and metabolomics data analysis. Our methods might be used for CRC risk assessment in postoperative patients.</p
    corecore