38 research outputs found

    Fluid Mode Spectroscopy for measuring dynamic viscosity of fluids in open cylindrical containers

    Full text link
    On a daily basis we stir tee or coffee with a spoon and leave it to rest. We know empirically the larger the stickiness, viscosity, of the fluid, more rapidly its velocity slows down. It is surprising, therefore, that the variation has not been utilized for measuring (dynamic) viscosity of fluids. This study shows that a spectroscopy decomposing a velocity field into fluid modes (Stokes eigenmodes) allows us to measure accurately the dynamic viscosity. The method, Fluid Mode Spectroscopy (FMS), is based on the fact that each Stokes eigenmode has its inherent decay rate of eigenvalue and that the dimensionless rate of the slowest decaying mode (SDM) is constant, dependent only on the normalized shape of a fluid container, obtained analytically for some shapes including cylindrical containers. The FMS supplements major conventional measuring methods with each other, particularly useful for measuring low dynamic viscosity.Comment: 18 pagese, 6 figure

    Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer

    Get PDF
    A common key regulator of oncogenic signaling pathways in multiple tumor types is the unique isomerase Pin1. However, available Pin1 inhibitors lack the required specificity and potency. Using mechanism-based screening, here we find that all-trans retinoic acid (ATRA)--a therapy for acute promyelocytic leukemia (APL) that is considered the first example of targeted therapy in cancer, but its drug target remains elusive--inhibits and degrades active Pin1 selectively in cancer cells by directly binding to the substrate phosphate- and proline-binding pockets in the Pin1 active site. ATRA-induced Pin1 ablation degrades the fusion oncogene PML-RARα and treats APL in cell and animal models and human patients. ATRA-induced Pin1 ablation also inhibits triple negative breast cancer cell growth in human cells and in animal models by acting on many Pin1 substrate oncogenes and tumor suppressors. Thus, ATRA simultaneously blocks multiple Pin1-regulated cancer-driving pathways, an attractive property for treating aggressive and drug-resistant tumors

    Pancreatic cancer cells enhance the ability of collagen internalization during epithelial-mesenchymal transition.

    Get PDF
    BACKGROUND: Extracellular matrix (ECM) remodeling is predominantly mediated by fibroblasts using intracellular and extracellular pathways. Although it is well known that extracellular degradation of the ECM by proteases derived from cancer cells facilitates cellular invasion, the intracellular degradation of ECM components by cancer cells has not been clarified. The aim of this study was to characterize collagen internalization, which is the initial step of the intracellular degradation pathway in pancreatic cancer cells, in light of epithelial-mesenchymal transition (EMT). METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the function of collagen internalization in two pancreatic cancer cell lines, SUIT-2 and KP-2, and pancreatic stellate cells (PSCs) using Oregon Green 488-gelatin. PSCs had a strong ability for collagen uptake, and the pancreatic cancer cells also internalized collagen although less efficiently. The collagen internalization abilities of SUIT-2 and KP-2 cells were promoted by EMT induced by human recombinant transforming growth factor β1 (P<0.05). Expression of Endo180, a collagen uptake receptor, was high in mesenchymal pancreatic cancer cell lines, as determined by EMT marker expression (P<0.01). Quantitative RT-PCR and western blot analyses showed that Endo180 expression was also increased by EMT induction in SUIT-2 and KP-2 cells. Endo180 knockdown by RNA interference attenuated the collagen uptake (P<0.01) and invasive abilities (P<0.05) of SUIT-2 and KP-2 cells. CONCLUSIONS/SIGNIFICANCE: Pancreatic cancer cells are capable of collagen internalization, which is enhanced by EMT. This ECM clearance system may be a novel mechanism for cellular invasion and a potential therapeutic target in pancreatic cancer

    Reconsideration of the Appropriate Dissection Range Based on Japanese Anatomical Classification for Resectable Pancreatic Head Cancer in the Era of Multimodal Treatment

    No full text
    Patients with resectable pancreatic cancer are considered to already have micro-distant metastasis, because most of the recurrence patterns postoperatively are distant metastases. Multimodal treatment dramatically improves prognosis; thus, micro-distant metastasis is considered to be controlled by chemotherapy. The survival benefit of “regional lymph node dissection” for pancreatic head cancer remains unclear. We reviewed the literature that could be helpful in determining the appropriate resection range. Regional lymph nodes with no suspected metastases on preoperative imaging may become areas treated with preoperative and postoperative adjuvant chemotherapy. Many studies have reported that the R0 resection rate is associated with prognosis. Thus, “dissection to achieve R0 resection” is required. The recent development of high-quality computed tomography has made it possible to evaluate the extent of cancer infiltration. Therefore, it is possible to simulate the dissection range to achieve R0 resection preoperatively. However, it is often difficult to distinguish between areas of inflammatory changes and cancer infiltration during resection. Even if the “dissection to achieve R0 resection” range is simulated based on the computed tomography evaluation, it is difficult to identify the range intraoperatively. It is necessary to be aware of anatomical landmarks to determine the appropriate dissection range during surgery
    corecore