171 research outputs found

    Coexistence of distinct charge fluctuations in θ\theta-(BEDT-TTF)2_2X

    Full text link
    Using the Lanczos exact-diagonalization and density-matrix renormalization group methods, we study the extended Hubbard model at quarter filling defined on the anisotropic triangular lattice. We focus on charge ordering (CO) phenomena induced by onsite and intersite Coulomb interactions. We determine the ground-state phase diagram including three CO phases, i.e., diagonal, vertical, and three-fold CO phases, based on the calculated results of the hole density and double occupancy. We also calculate the dynamical density-density correlation functions and find possible coexistence of the diagonal and three-fold charge fluctuations in a certain parameter region where the onsite and intersite interactions compete. Furthermore, the characteristic features of the optical conductivity for each CO phase are discussed.Comment: 9 pages, 7 figure

    The Cellular Mechanism for Water Detection in the Mammalian Taste System

    Get PDF
    Initiation of drinking behavior relies on both internal state and peripheral water detection. While central neural circuits regulating thirst have been well studied, it is still unclear how mammals recognize external water. Here we show that acid-sensing taste receptor cells (TRCs) that were previously suggested as the sour taste sensors also mediate taste responses to water. Genetic silencing of these TRCs abolished water-evoked responses in taste nerves. Optogenetic self-stimulation of acid-sensing TRCs in thirsty animals induced robust drinking responses toward light even without water. This behavior was only observed when animals were water-deprived but not under food- or salt-depleted conditions, indicating that the hedonic value of water-evoked responses is highly internal-state dependent. Conversely, thirsty animals lacking functional acid-sensing TRCs showed compromised discrimination between water and nonaqueous fluids. Taken together, this study revealed a function of mammalian acid-sensing TRCs that provide a cue for external water

    Effect of Chorda Tympani Nerve Transection on Salt Taste Perception in Mice

    Get PDF
    Effects of gustatory nerve transection on salt taste have been studied extensively in rats and hamsters but have not been well explored in the mouse. We examined the effects of chorda tympani (CT) nerve transection on NaCl taste preferences and thresholds in outbred CD-1 mice using a high-throughput phenotyping method developed in our laboratory. To measure taste thresholds, mice were conditioned by oral self-administration of LiCl or NaCl and then presented with NaCl concentration series in 2-bottle preference tests. LiCl-conditioned and control NaCl-exposed mice were given bilateral transections of the CT nerve (LiCl-CTX, NaCl-CTX) or were left intact as controls (LiCl-CNT, NaCl-CNT). After recovery from surgery, mice received a concentration series of NaCl (0–300 mM) in 48-h 2-bottle tests. CT transection increased NaCl taste thresholds in LiCl-conditioned mice and eliminated avoidance of concentrated NaCl in control NaCl-exposed mice. This demonstrates that in mice, the CT nerve is important for detection and recognition of NaCl taste and is necessary for the normal avoidance of high concentrations of NaCl. The results of this experiment also show that the method of high-throughput phenotyping of salt taste thresholds is suitable for detecting changes in the taste periphery in mouse genetic studies

    Calcineurin and Protein kinase G regulate C. elegans behavioral quiescence during locomotion in liquid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most rhythmic motor behaviors in nature are episodic i.e. they alternate between different behavioral states, including quiescence. Electrophysiological studies in invertebrate behavioral switching, maintenance and quiescence have elucidated several neuronal mechanisms that generate a temporal pattern in behavior. However, the genetic bases of these processes are less well studied. We have previously uncovered a novel episodic behavior exhibited by <it>C. elegans </it>in liquid media where they alternate between distinct phases of rhythmic swimming and quiescence. Here, we have investigated the effect of several genes and their site of action on the behavioral quiescence exhibited in liquid by the nematode <it>C. elegans</it>.</p> <p>Results</p> <p>We have previously reported that high cholinergic signaling promotes quiescence and command interneurons are critical for timing the quiescence bout durations. We have found that in addition to command interneurons, sensory neurons are also critical for quiescence. We show that the protein phosphatase calcineurin homolog <it>tax-6 </it>promotes swimming whereas the protein kinase G homolog <it>egl-4 </it>promotes quiescence. <it>tax-6 </it>expression in the sensory neurons is sufficient to account for its effect. <it>egl-4 </it>also acts in multiple sensory neurons to mediate its effect on quiescence. In addition our data is consistent with regulation of quiescence by <it>egl-4 </it>acting functionally downstream of release of acetylcholine (ACh) by motor neurons.</p> <p>Conclusions</p> <p>Our study provides genetic evidence for mechanisms underlying the maintenance of a behavioral state operating at multiple neuronal levels through the activities of a kinase and a phosphatase. These results in a genetically tractable organism establish a framework for further dissection of the mechanism of quiescence during episodic behaviors.</p

    Linking African ancestral substructure to prostate cancer health disparities

    Get PDF
    DATA AVAILABITY STATEMENT: The data underlying this article were obtained from the Southern African Prostate Cancer Study (SAPCS) and cannot be shared publicly due to the privacy of individuals who participated in the study. Researchers can apply for access to deidentified data through the SAPCS Data Access Committee management team V.M. Hayes, M.S.R. Bornman and/or S.B.A. Mutambirwa.Prostate cancer (PCa) is a significant health burden in Sub-Saharan Africa, with mortality rates loosely linked to African ancestry. Yet studies aimed at identifying contributing risk factors are lacking within the continent and as such exclude for significant ancestral diversity. Here, we investigate a series of epidemiological demographic and lifestyle risk factors for 1387 men recruited as part of the multi-ethnic Southern African Prostate Cancer Study (SAPCS). We found poverty to be a decisive factor for disease grade and age at diagnosis, with other notably significant Prostate cancer associated risk factors including sexually transmitted diseases, erectile dysfunction, gynaecomastia, and vertex or complete pattern balding. Aligned with African American data, Black ethnicity showed significant risk for Prostate cancer diagnosis (OR = 1.44, 95% CI 1.05–2.00), and aggressive disease presentation (ISUP ≥ 4: OR = 2.25, 95% CI   1.49–3.40). New to this study, we demonstrate African ancestral population substructure associated Prostate cancer disparity, observing increased risk for advanced disease for the southern African Tsonga people (ISUP ≥ 4: OR = 3.43, 95% CI   1.62–7.27). Conversely, South African Coloured were less likely to be diagnosed with aggressive disease overall (ISUP ≥ 3: OR = 0.38, 95% 0.17–0.85). Understanding the basis for Prostate cancer health disparities calls for African inclusion, however, lack of available data has limited the power to begin discussions. Here, focusing on arguably the largest study of its kind for the African continent, we draw attention to the contribution of within African ancestral diversity as a contributing factor to Prostate cancer health disparities within the genetically diverse region of southern Africa.The U.S.A. Department of Defense (DoD) Congressionally Directed Medical Research Programs (CDMRP) Prostate Cancer Research Program (PCRP) Idea Development Award.https://www.nature.com/srep/BiochemistrySchool of Health Systems and Public Health (SHSPH)SDG-03:Good heatlh and well-beingSDG-10:Reduces inequalitie

    Chicken CRTAM Binds Nectin-Like 2 Ligand and Is Upregulated on CD8⁺ αβ and γδ T Lymphocytes with Different Kinetics

    Get PDF
    During a search for immunomodulatory receptors in the chicken genome, we identified a previously cloned chicken sequence as CRTAM homologue by its overall identity and several conserved sequence features. For further characterization, we generated a CRTAM specific mab. No staining was detectable in freshly isolated cell preparations from thymus, bursa, caecal tonsils, spleen, blood and intestine. Activation of splenocytes with recombinant IL-2 increased rapid CRTAM expression within a 2 h period on about 30% of the cells. These CRTAM+ cells were identified as CD8+ γδ T lymphocytes. In contrast, CRTAM expression could not be stimulated on PBL with IL-2, even within a 48 h stimulation period. As a second means of activation, T cell receptor (TCR) crosslinking using an anti-αβ-TCR induced CRTAM on both PBL and splenocytes. While CRTAM expression was again rapidly upregulated on splenocytes within 2 h, it took 48 h to reach maximum levels of CRTAM expression in PBL. Strikingly, albeit the stimulation of splenocytes was performed with anti-αβ-TCR, CRTAM expression after 2 h was mainly restricted to CD8+ γδ T lymphocytes, however, the longer anti-TCR stimulation of peripheral blood lymphocytes (PBL) resulted in CRTAM expression on αβ T lymphocytes. In order to characterize the potential ligand we cloned and expressed chicken Necl-2, a member of the nectin and nectin-like family which is highly homologous to its mammalian counterpart. Three independent assays including a reporter assay, staining with a CRTAM-Ig fusion protein and a cell conjugate assay confirmed the interaction of CRTAM with Necl-2 which could also be blocked by a soluble CRTAM-Ig fusion protein or a CRTAM specific mab. These results suggest that chicken CRTAM represents an early activation antigen on CD8+ T cells which binds to Necl-2 and is upregulated with distinct kinetics on αβ versus γδ T lymphocytes

    Evolution of Vertebrate Transient Receptor Potential Vanilloid 3 Channels: Opposite Temperature Sensitivity between Mammals and Western Clawed Frogs

    Get PDF
    Transient Receptor Potential (TRP) channels serve as temperature receptors in a wide variety of animals and must have played crucial roles in thermal adaptation. The TRP vanilloid (TRPV) subfamily contains several temperature receptors with different temperature sensitivities. The TRPV3 channel is known to be highly expressed in skin, where it is activated by warm temperatures and serves as a sensor to detect ambient temperatures near the body temperature of homeothermic animals such as mammals. Here we performed comprehensive comparative analyses of the TRPV subfamily in order to understand the evolutionary process; we identified novel TRPV genes and also characterized the evolutionary flexibility of TRPV3 during vertebrate evolution. We cloned the TRPV3 channel from the western clawed frog Xenopus tropicalis to understand the functional evolution of the TRPV3 channel. The amino acid sequences of the N- and C-terminal regions of the TRPV3 channel were highly diversified from those of other terrestrial vertebrate TRPV3 channels, although central portions were well conserved. In a heterologous expression system, several mammalian TRPV3 agonists did not activate the TRPV3 channel of the western clawed frog. Moreover, the frog TRPV3 channel did not respond to heat stimuli, instead it was activated by cold temperatures. Temperature thresholds for activation were about 16 °C, slightly below the lower temperature limit for the western clawed frog. Given that the TRPV3 channel is expressed in skin, its likely role is to detect noxious cold temperatures. Thus, the western clawed frog and mammals acquired opposite temperature sensitivity of the TRPV3 channel in order to detect environmental temperatures suitable for their respective species, indicating that temperature receptors can dynamically change properties to adapt to different thermal environments during evolution

    Counteraction of Tetherin Antiviral Activity by Two Closely Related SIVs Differing by the Presence of a Vpu Gene

    Get PDF
    In different primate lentiviruses, three proteins (Vpu, Env and Nef) have been shown to have anti-tetherin activities. SIVden is a primate lentivirus harbored by a Cercopithecus denti (C. denti) whose genome code for a Vpu gene. We have compared the activity of HIV-1 Vpu and of SIVden Vpu on tetherin proteins from humans, from C. denti and from Cercopithecus neglectus (C. neglectus), a monkey species that is naturally infected by SIVdeb, a virus closely related to SIVden but which does not encode a Vpu protein. Here, we demonstrate that SIVden Vpu, is active against C. denti tetherin, but not against human tetherin. Interestingly, C. neglectus tetherin was more sensitive to SIVden Vpu than to HIV-1 Vpu. We also identify residues in the tetherin transmembrane domains that are responsible for the species-specific Vpu effect. Simultaneous mutation (P40L and T45I) of human tetherin conferred sensitivity to SIVden Vpu, while abolishing its sensitivity to HIV-1 Vpu. We next analyzed the anti-tetherin activity of the Nef proteins from HIV-1, SIVden and SIVdeb. All three Nef proteins were unable to rescue virus release in the presence of human or C. denti tetherin. Conversely, SIVdeb Nef enhanced virus release in the presence of C. neglectus tetherin, suggesting that SIVdeb relies on Nef in its natural host. Finally, while HIV-1 Vpu not only removed human tetherin from the cell surface but also directed it for degradation, SIVden Vpu only induced the redistribution of both C. denti and C. neglectus tetherins, resulting in a predominantly perinuclear localization

    Plasma antibodies against heat shock protein 70 correlate with the incidence and severity of asthma in a Chinese population

    Get PDF
    BACKGROUND: The heat shock proteins (Hsps) are induced by stresses such as allergic factors and inflammatory responses in bronchi epithelial cells and therefore may be detectable in patients with asthma. However, the etiologic link between anti-Hsps and asthma (its severity and related inflammatory responses such as interleukin-4 and immunoglobulin E) has not been established. We determined whether antibodies against Hsp60 and Hsp70 were present in patients with asthma and evaluated their associations with risk and severity of asthma. METHODS: We determined the levels of anti-Hsp60 and anti-Hsp70 by immunoblot and their associations with risk and symptom severity of asthma in 95 patients with asthma and 99 matched non-symptomatic controls using multivariate logistic regression analysis. RESULTS: Compared to the controls, asthma patients were more likely to have detectable anti-Hsp60 (17.2% vs 5.1%) and anti-Hsp70 (33.7% vs 8.1%) (p ≤ 0.001). In particular, the presence of anti-Hsp70 was associated with a greater than 2 fold risk for asthma (adjusted OR = 2.21; 95% CI = 1.35~3.59). Furthermore, both anti-Hsp60 and anti-Hsp70 levels were positively correlated with symptom severity (p < 0.05) as well as interleukin-4 and immunoglobulin E (p < 0.05). Individuals with antibodies against anti-Hsp60 and anti-Hsp70 were more likely to have a family history of asthma (p < 0.001) and higher plasma concentrations of total immunoglobulin E (p = 0.001) and interleukin-4 (p < 0.05) than those without antibodies. CONCLUSIONS: These data suggest that anti-Hsp60 and especially anti-Hsp70 correlate with the attacks and severity of asthma. The underlying molecular mechanisms linking antibodies to heat shock proteins and asthma remain to be investigated
    corecore