193 research outputs found

    Some development of a zonally averaged climate model

    Get PDF

    Fermi Resonance and the Quantum Mechanical Basis of Global Warming

    Full text link
    Although the scientific principles of anthropogenic climate change are well-established, existing calculations of the warming effect of carbon dioxide rely on spectral absorption databases, which obscures the physical foundations of the climate problem. Here we show how CO2 radiative forcing can be expressed via a first-principles description of the molecule's key vibrational-rotational transitions. Our analysis elucidates the dependence of carbon dioxide's effectiveness as a greenhouse gas on the Fermi resonance between the symmetric stretch mode ν1\nu_1 and bending mode ν2\nu_2. It is remarkable that an apparently accidental quantum resonance in an otherwise ordinary three-atom molecule has had such a large impact on our planet's climate over geologic time, and will also help determine its future warming due to human activity. In addition to providing a simple explanation of CO2 radiative forcing on Earth, our results may have implications for understanding radiation and climate on other planets.Comment: 15 pages, 7 figures, accepted to The Planetary Science Journa

    Simulations of Arctic ozone depletion with current and doubled levels of CO2

    Get PDF
    Results from idealized 3-D simulations of a dynamical-radiative-photochemical model of the stratosphere are presented for the Northern Hemisphere winter and spring. For a simulation of a quiescent winter, it is found that with current levels of CO2 only modest polar ozone depletion occurs, consistent with observations. For a second simulation with the same planetary wave amplitudes in the upper troposphere but with doubled CO2, the model predicts a northern hemisphere ozone hole comparable to that observed in Antarctica with almost complete ozone destruction at 20 km. Reasons for the marked difference between the simulations are identified
    • …
    corecore