1,324 research outputs found

    Progress on Global Preparedness for Influenza Pandemic, WHO

    Get PDF

    The influence of an external magnetic field on the dynamic stress of an elastic conducting one-sided layer with a longitudinal shear crack

    Get PDF
    We study the interaction of a magnetoelastic shear wave with a curvilinear tunnel crack in an ideally conducting diamagnetic (resp. paramagnetic) one-sided (resp. two-sided) layer in the presence of an external static magnetic field. The bases of the one-sided layer are free of mechanical load, and the rim of the face is clamped or free. The corresponding linearized boundary-value problem of magnetoelasticity is reduced to a singular integrodifferential equation with subsequent implementation on a computer. We give numerical results that characterize the influence of the size of the preliminary magnetic field, the frequencies of the load, the curvature, and the orientation of the crack on the stress intensity factor. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2163

    The interaction of a magnetoelastic shear wave with longitudinal cavities in a conducting layer

    Get PDF
    We study the influence of a strong magnetic field on the interaction of a shear wave with longitudinal cylindrical cavities in an elastic ideally conducting layer. The resulting singular integral equation of the boundary-value problem under consideration is implemented numerically for the case of a single cavity. We present the results of computation of the stresses on the edge of a circular cavity and an elliptical cavity. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2163

    Cu-NMR study on the disordered quantum spin magnet with the Bose-glass ground state

    Full text link
    Cu-NMR study has been performed on the disordered spin-gap system Tl1-xKxCuCl3 In the high-field H > HC=\Delta/\mu_B, where \Delta is the spin-gap, the hyperfine field becomes extremely inhomogeneous at low temperatures due to the field-induced magnetic order, indicating that the ordered spin state must be different from the pure TlCuCl3. In the low field H < HC, a saturating behavior in the longitudinal nuclear spin relaxation rate 1/T1 was observed at low temperatures, indicating existence of the magnetic ground state proposed to be Bose-glass phase by Fisher.Comment: RHMF200

    Valley Splitting Theory of SiGe/Si/SiGe Quantum Wells

    Full text link
    We present an effective mass theory for SiGe/Si/SiGe quantum wells, with an emphasis on calculating the valley splitting. The theory introduces a valley coupling parameter, vvv_v, which encapsulates the physics of the quantum well interface. The new effective mass parameter is computed by means of a tight binding theory. The resulting formalism provides rather simple analytical results for several geometries of interest, including a finite square well, a quantum well in an electric field, and a modulation doped two-dimensional electron gas. Of particular importance is the problem of a quantum well in a magnetic field, grown on a miscut substrate. The latter may pose a numerical challenge for atomistic techniques like tight-binding, because of its two-dimensional nature. In the effective mass theory, however, the results are straightforward and analytical. We compare our effective mass results with those of the tight binding theory, obtaining excellent agreement.Comment: 13 pages, 7 figures. Version submitted to PR

    Theory of optical spectra of polar quantum wells: Temperature effects

    Full text link
    Theoretical and numerical calculations of the optical absorption spectra of excitons interacting with longitudinal-optical phonons in quasi-2D polar semiconductors are presented. In II-VI semiconductor quantum wells, exciton binding energy can be tuned on- and off-resonance with the longitudinal-optical phonon energy by varying the quantum well width. A comprehensive picture of this tunning effect on the temperature-dependent exciton absorption spectrum is derived, using the exciton Green's function formalism at finite temperature. The effective exciton-phonon interaction is included in the Bethe-Salpeter equation. Numerical results are illustrated for ZnSe-based quantum wells. At low temperatures, both a single exciton peak as well as a continuum resonance state are found in the optical absorption spectra. By contrast, at high enough temperatures, a splitting of the exciton line due to the real phonon absorption processes is predicted. Possible previous experimental observations of this splitting are discussed.Comment: 10 pages, 9 figures, to appear in Phys. Rev. B. Permanent address: [email protected]
    corecore