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THE I N F L U E N C E  OF A N  EXTEI:tNAL M A G N E T I C  F I E L D  
ON THE D Y N A M I C  STRESS OF A N  E L A S T I C  C O N D U C T I N G  
ONE-SIDED L A Y E R  W I T H  A L O N G I T U D I N A L  S H E A R  C R A C K  

L. A. Fil 'shtinskii  and V.  I. Ostrik UDC 539.3 

We study the interaction of a magnetoelastic shear wave with a curvilinear tunnel crack in an ideally con- 
ducting diamagnetic (resp. paramagnetic) one-sided (resp. two-sided) layer in the presence of an ezternal 
static magnetic field. The bases of the one-sided layer are free of mechanical load, and the rim of the face 
is clamped or free. The corresponding linearized boundary-value problem of magnetoelasticity is reduced to 
a singular integrodifferential equation with subsequent implementation on a computer. We give numerical 
results that characterize the influence of the size of the preliminary magnetic field, the frequencies of the 
load, the curvature, and the orientation of the crack on the stress intensity factor. 

3 Figures. Bibliography: 6 titles. 

Strong static magnetic fields may exert a determining influence on the diffraction of elastic stress waves 
in bodies with irrhomogeneities. In this situation the mechanical and electromagnetic fields caused by the 
motion of an elastic diamagnetic (resp. paramagaetic)  medium are coupled. This is manifested in the 
presence of Lorentz forces in the equations of motion and the additional Maxwell stress tensor [1]. 

Certain diffraction problems of a magnetoelastic wave on a rectilinear crack in an unbounded medium 
were studied in [2, 3]. In the present paper we study the interaction of a shear magnetoelastic wave with a 
tunnel curvilinear crack in a diamagnetic (resp. paramagnetic) one-sided layer. 

We consider an ideally conducting elastic one-sided layer occupying the region 0 < x < a, 0 < y < cx~, 
- o r  < z' < cx3 in xyz'-coordinates.  This one-sided layer is located in a static magnetic field of intensity 

H ~ = (0, H0,0) and weakened by a cylindrical slit-crack along the z'-axis. 
Suppose a magnetoelastic shear displacement wave W0 radiates from infinity [2], and the surface of 

the crack is either free of forces or subject to the action of a t ime-harmonic load that  is constant along a 
generator. In this case a stationary wave process arises in the body corresponding to a state of antiplane 

deformation: U = (0, 0, We -/~t)  (here U is the elastic displacement vector, w is the periodic frequency, 
and t is time). All quantities that characterize the stress-strain and electromagnetic state of the medium 
contain the time factor e - i~ t ,  which we shall omit in what follows. 

The tension of the quasistatic electromagnetic field induced in the body can be obtained from the 
linearized Maxwell equations [1] in the form 

h = ( - H O W ,  O, 0), -~ = (i t~,wHoW, O, 0). (1) 

We write the resolvent equation for the displacement W ( x ,  y), which follows from the linearized equations 
of motion, as follows: 

v 2 w  + x2o w/oy +7 w = o (p  = , , H g / , ,  = (2) 

Here #~ is the magnetic permeability, p is the density of the medium, # is the shear modulus, 72 is the wave 
number, and gr~ is the Laplacian. 

The total stresses ~rx,, ~r~, are obtained by adding the mechanical stresses r** and r,z and the Maxwell 
stresses txz, ty,  and are expressed in terms of the displacement W ( x ,  y) according to the formulas 

axz = rxz + tx~, ayz = ry~ + tyz, rxz = #OW/Ox ,  ryz = lzOW/Oy, tx~ = O, ty~ = #x2OW/Oy.  (3) 

Translated from Teoreticheskaya i Prikladnaya Mekhanika, No, 23, 1992, pp. 96-102. 
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Assume that the bases of the one-sided layer are free of forces 

Ow/oz = 0 ( z  = o,  z = '0 .  ( 4 )  

We give the condition on the face boundary of the one-sided layer in the form 

A(A - 1)W + A(A  + 1)OW/Oy = 0 (y = 0). ( 5 )  

Here if A = 1 or - 1 ,  we have respectively a free or a reinforced face rim for the one-sided layer; if A = 0, 
we are considering a layer 0 < x < a, - c o  < y < co, - c o  < z' < co. 

We assume that  a maguetoelastic shear wave 

Wo = ~'e~{-i~,~vlv'f + X~}, ( 6 )  

is propagating along the negative direction of the y-axis, and on the edges of the crack S a time-harmonic 
mechanical load X ~  = Y~ = 0, Z~  = •  is possible. 

Let L be the line of intersection of the surface S and the xy.plane, and let ~ = (cos r sin r  be the 
unit normal to L. Assume that  Z and the curvature of the arc L are functions of class H [4]. We write the 
boundary condition on the edge of the crack in the form 

1 
" - "  " '  - - -  - ( o w / 0 n ~  L = - z  ( 7 )  

The equation of the vibrations (2) in the passage to new coordinates zl = x, yl = y/V/- I+ X 2 can be 
transformed into the Helmholtz equation 

o2w/ox~ + o2w/oy~ +-r~w = o. (8) 

The differentials dsl and ds of arc length on L in the coordinate systems x ly l  and xy are connected by the 
relation (1 + X 2) ds21 = (1 + X 2 sin 2 r  ds 2. 

We represent the solution of the problem (2), (4)-(7) in the form of a superposition of the incident, 
reflected, and scattered waves: 

W = Wo + AWx + W. ,  W1 = rexp(i72Yl) ,  

OG d-: "~ ix  2 sin 2r ,, ,,., ds } ,  I/V*(x, Y) : -i / {'(') (~-~i d(' - ~i (1) - 2~" tsJt~ 
L 

1 ei.~=l~_v~l ~ e_~l~t_v~l cosoek~cos~kx, 
g( ( , z ,  rh -- Yl) = 2i72a -- -a 

ak=  - ~  (~ < ~) ,  ik = - - i  --~i  (~  > ~k), ~k = - - ,  
a 

G = ( + i m ,  , 7 1 = ~ / ~ + x  2, r  z = x + i v .  

( 9 )  

Here p(s) is the unknown density, W1 is the wave reflected from the face boundary  of the one-sided layer, 
G is the Green's function of the boundary-value problem (8), (4), (5) for the semi-infinite strip 0 _< x 1 ~ _ _  fl, 
0 _< Yl < CO, and g is the Green's function for the boundary-value problem (8), (4) for the strip 0 _< xl _< a, 
- -oo  < y l  < o o .  

The integral representation (9) satisfies the differential equation (2), the boundary conditions (4), (5), 
and the radiation conditions of [5], and also guarantees the continuity of the mechanical stresses and the 
existence of a jump in displacement on the contour L. 
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To exhibit the logarithmic singularity of the Green's function and the strengthening of the convergence 
of the series in (9) we sum its principal part. The result is 

g(~,X,~l - - Y l ) =  ~ l n l  [ 4 s i n ~ ( < l -  Zl )s in~(C1 -~Zl) -- ~-~]~11 _ Yl)]-~- 2i'~2~1 i 

1 (~e_Rkllh_yl[ 1 c_ottclrh_yll ) COS Otk ~ COSOtkX, Zl �9 + iyl. (10) 
k=l 

We compute the normal derivative of the function W of (9) by regularizing the divergent integrals 
through integration by parts and repeatedly summing the principal parts of the series for the second 
derivatives of the Green's function. Substituting the limiting value of the normal derivative as z --+ C0 = 
G0 + it/0 E L into the boundary condition (7), we arrive at a singular integro-differential equation on L with 
respect to the function p(s): 

f {p'(s)h(s, So) + V(s)H(s, So)} ds = F(so), (11) 

L 
c(r 1 2 h(s, so = Im ~ Z~0,  + ~ a  x X1 s in2r  [c(r C2 - c o t  C3 + 2isgn r/2)] 

- 2X1 sin r 7/2. e -i'r21q~l - Ae i'r2"~) - 4 ~ Clk(Otk~91kS2k COS/~0 -- X1Ct92kC2k sin r  
k=l 

H(s, so) = - 8 : 2  Im {c'(r162 -2 csc 2 C2) + c(r csc 2 C3]} 

1 2 al~21) sin C sin r ] + ~-~72 X a [ cos(r - r  In ] sin ~2 [ - cos(r + r ) In ] sin ~31 + (2 In 2 - ~r 

i72x----2 sin r sin r -i~')~'t + Ae 172~3) + X-L Z[~3kClkC2k sin r sin r - a2~PlkSlkS2k COS r COS ~/~0 "at- 
2a a k=l 

2 
akqo2k(XxSlkc2k cos r sin r -- XoClkS2k sin r cos r + ~(SlkS2k COS r COS r + CakC2k sin r sin r -akI"21], 

Z" F(so)=~Z+~-~asinr ), p(s)= p'(s)ds, c(r162162 
# 

c'(r = - s i n r  + ix1 cosr 

~o,k = ! ( e - ~ l , . I  + A e - ~ , ~ )  _ ! e - ~ l ~ . l .  ~ = s g n ~ -  (e - ~ l ~ ' l  - e -~ ' l~ ' l )  - a e - ~ %  
Ak ~ 

~3~ = X*( e-x~ln~[ + Ae-X~'~a) - cede -o~lnzl, 

Co~=~0+ir/o~, r/0~=Xxr/0, X o = V ~ + X  2, x , = l / ~ / l + x  2, 
cat, = c o s a ~ ,  c~  = cosc~k~o, sa~ = s i n a i , ,  s2k = sinak~o. 

Here the kernel h(s, so) is singular, and II(s, so) has a logarithmic singularity. 
The condition that there are no  discontinuities in displacement at the tips of the slit leads to the 

equality 

f p'(s)ds = 0 .  (12) 

L 
Equations (11) and (12) determine uniquely the solution with an unbounded derivative at the tips of 

the slit [4]. 
It is convenient in what follows to introduce a parametrization of the contour of the slit: ff = ~(/3) 

( - 1  </3 < 1). Accordingly p'(s) = f~.(/3)/(s'(/3)X/1 - /32),  p.(/3) E H [ - 1 ,  1]. 
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To determine the total stresses axz and ay~ in a neighborhood of the tip of the defect we use the 
integral representation (9). Asymptotic analysis of the integrals occurring in the formulas for the stresses 
yields: 

Taking account of (13), we determine the dynamic stress intensity factor 

/~ ~/~r(1 + X2)/s'(=l=l)~(=kl), Klzz = ~--0lim ~ ( a z z  cosCr + ayz s ince)  = :t=~ (14) 

where r is the distance from the point in question to the extension of the crack up to the face c. 
A numerical implementation of Eqs. (11), (12) was carried out by the method of mechanical quadratures 

using the Gauss-Chebyshev quadrature formulas for regular and singular integrals [6]. 
Computations of the dimensionless quantities a 4" were carried out for the case of diffraction of an 

incident shear wave (0" ~ 0) on a load-free crack (Z = 0). The stress intensity factor can be expressed in 
terms of a • as foUows: IQZl = v/-~a+lTylarg$2(~l), [Ty[ = #72r/v~1 + X 2 is the modulus of mechanical 
stress in the incident wave, the upper sign corresponding to the face r of the crack and the lower to 
r  

Figures 1 and 2 depict the dependence of the quanti ty a -  on the normalized wave number 72a. The 
parametric representation of the contour of the crack is the following: ~/a = 0.5 + 0.2/3, 77/a = 1 + p/32, 
- 1  _< /3 _< 1. The value of the curvature parameter  p = 0 corresponds to a rectilinear crack (Fig. 1), 
p = 0.1 to a parabolic crack (Fig. 2). Curves 1 are constructed for a d a m p e d  face rim of the one-sided 
layer (A = - 1 ) ,  curves 2 to a free face (A = 1). The solid curves correspond to the value z = 1 and the 
dashed curves to x = 0. It can be seen that the applied magnetic field shifts the extreme points toward the 
larger values of 72a. Here for a given distance from the rectilinear crack to the face rim the quanti ty Kl l  1 
vanishes for "r2a = (2k + I ) ~ / Z  + .~2/2, A = - 1  and k ~ , / t  + X ~, A = 1 (k = 0, 1 , . . . ) .  As "~a is increased 
for a layer (A = 0) the quantity o~- increases very little. 

Figure 3 shows the variation of the quantity a -  from the angle of inclination ~o of the rectilinear crack 
of length 0.4a for a one-sided layer with a clamped face (A = 1, "y2a = 4, curves 1 ) and a free face (A = 1, 
72a -- ~r/2, curves s and for a layer (A = 0, 72a -- 4, curves 3). The equations of the contour L have 
the form ~/a = 0.5 + 0.2/3 cos ~o; rl/a = 1 -F 0.2/3sine2, - 1  < /3 < 1. The solid curves correspond to the 
value X -- 1, the dash-dotted lines to X -- 0.5, and the dashed lines to X -- 0. The nature  of the influence 
of the magnetic field on the stress intensity factor Kzzz depends bo th  on the angle of inclination of the 
crack and the form of the boundary condition at the face y = 0. Thus, an applied static magnetic field 
corresponding to the value X = 1 significantly increases a -  when ~o E [0,45 ~ for all the values of the 
parameter  A considered. At the same time for ~o E [45 ~ 90 ~ the quantity a -  increases sharply in the case 
of a clamped face and very little in the case of a layer and a one-sided layer with a load-free face. 
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The dependences represented illustrate the possibility of controlling the dynamic stress of the body 
using an external magnetic field. 
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