314 research outputs found

    The continuum limit of the static-light meson spectrum

    Full text link
    We investigate the continuum limit of the low lying static-light meson spectrum using Wilson twisted mass lattice QCD with N_f = 2 dynamical quark flavours. We consider three values of the lattice spacing a ~ 0.051 fm, 0.064 fm, 0.080 fm and various values of the pion mass in the range 280 MeV < m_PS < 640 MeV. We present results in the continuum limit for light cloud angular momentum j = 1/2, 3/2, 5/2 and for parity P = +, -. We extrapolate our results to physical quark masses, make predictions regarding the spectrum of B and B_s mesons and compare with available experimental results.Comment: 18 pages, 3 figure

    f_B and f_Bs with maximally twisted Wilson fermions

    Full text link
    We present a lattice QCD calculation of the heavy-light decay constants f_B and f_Bs performed with Nf=2 maximally twisted Wilson fermions, at four values of the lattice spacing. The decay constants have been also computed in the static limit and the results are used to interpolate the observables between the charm and the infinite-mass sectors, thus obtaining the value of the decay constants at the physical b quark mass. Our preliminary results are f_B=191(14) MeV, f_Bs=243(14) MeV, f_Bs/f_B=1.27(5). They are in good agreement with those obtained with a novel approach, recently proposed by our Collaboration (ETMC), based on the use of suitable ratios having an exactly known static limit.Comment: Proceedings of the 27th International Symposium on Lattice Field Theory (Lattice 2009), Beijing, China, 2009 July 26-31. 8 pages, 3 figure

    A first look at maximally twisted mass lattice QCD calculations at the physical point

    Full text link
    In this contribution, a first look at simulations using maximally twisted mass Wilson fermions at the physical point is presented. A lattice action including clover and twisted mass terms is presented and the Monte Carlo histories of one run with two mass-degenerate flavours at a single lattice spacing are shown. Measurements from the light and heavy-light pseudoscalar sectors are compared to previous Nf=2N_f = 2 results and their phenomenological values. Finally, the strategy for extending simulations to Nf=2+1+1N_f = 2 + 1 + 1 is outlined.Comment: presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German

    Gliopathy of Demyelinating and Non-Demyelinating Strains of Mouse Hepatitis Virus.

    Get PDF
    Demyelination in the central nervous system induced by neurovirulent strains of Mouse Hepatitis Virus (MHV) is mediated by the viral spike glycoprotein, but it is not clear whether the mechanism of this disease pathology involves direct viral infection of oligodendrocytes. Detailed studies of glial cell tropism of MHV are presented, demonstrating that direct MHV infection of oligodendrocytes differs between demyelinating (RSA59) and non-demyelinating (RSMHV2) viral strains both in vitro and in vivo. Our results indicate that direct injury of mature oligodendrocytes is an important mechanism of virus-induced demyelination. In vivo, RSA59 infection was identified in spinal cord gray and white matter, but infected oligodendrocytes were restricted to white matter. In contrast, RSMHV2 infection was restricted to gray matter neurons and was not localized to oligodendrocytes. In vitro, RSA59 can infect both oligodendrocyte precursors and differentiated oligodendrocytes, whereas RSMHV2 can infect oligodendrocyte precursors but not differentiated oligodendrocytes. Viral spreading through axonal means to white matter and release of the demyelinating strain MHV at the nerve end is critical for oligodendrocytes infection and subsequent demyelination. Understanding the mechanisms by which known viruses effect demyelination in this animal model has important therapeutic implications in the treatment of human demyelinating disease

    Twisted mass chiral perturbation theory for 2+1+1 quark flavours

    Full text link
    We present results for the masses of pseudoscalar mesons in twisted mass lattice QCD with a degenerate doublet of u and d quarks and a non-degenerate doublet of s and c quarks in the framework of next-to-leading order chiral perturbation theory, including lattice effects up to O(a^2). The masses depend on the two twist angles for the light and heavy sectors. For maximal twist in both sectors, O(a)-improvement is explicitly exhibited. The mixing of flavour-neutral mesons is also discussed, and results in the literature for the case of degenerate s and c quarks are corrected.Comment: LaTeX2e, 12 pages, corrected typo

    Lattice QCD determination of m_b, f_B and f_Bs with twisted mass Wilson fermions

    Get PDF
    We present a lattice QCD determination of the b quark mass and of the B and B_s decay constants, performed with N_f=2 twisted mass Wilson fermions, by simulating at four values of the lattice spacing. In order to study the b quark on the lattice, two methods are adopted in the present work, respectively based on suitable ratios with exactly known static limit and on the interpolation between relativistic data, evaluated in the charm mass region, and the static point, obtained by simulating the HQET on the lattice. The two methods provide results in good agreement. For the b quark mass in the MSbar scheme and for the decay constants we obtain m_b(m_b)=4.29(14) GeV, f_B=195(12) MeV, f_Bs=232(10) MeV and f_Bs/f_B=1.19(5). As a byproduct of the analysis we also obtain the results for the f_D and f_Ds decay constants: f_D=212(8) MeV, f_Ds=248(6) MeV and f_Ds/f_D=1.17(5).Comment: 23 pages, 10 figures, 2 tables. Added appendix showing the agreement of the data for the ratios with the HQE prediction. Matching JHEP published versio

    {\eta} and {\eta}' mesons from Nf=2+1+1 twisted mass lattice QCD

    Full text link
    We determine mass and mixing angles of eta and eta' states using Nf=2+1+1 Wilson twisted mass lattice QCD. We describe how those flavour singlet states need to be treated in this lattice formulation. Results are presented for three values of the lattice spacing, a=0.061 fm, a=0.078 fm and a=0.086 fm, with light quark masses corresponding to values of the charged pion mass in a range of 230 to 500 MeV and fixed bare strange and charm quark mass values. We obtain 557(15)(45) MeV for the eta mass (first error statistical, second systematic) and 44(5) degrees for the mixing angle in the quark flavour basis, corresponding to -10(5) degrees in the octet-singlet basis.Comment: 28 pages, 9 figures, version to appear in JHEP, extended discussion of autocorrelation times and comparison to results available in the literature, added a comment for FS-effects and clarified the description of our blocking procedur
    • …
    corecore