20 research outputs found

    Far-infrared rays control prostate cancer cells _in vitro_ and _in vivo_

    Get PDF
    We introduce a new effective method to control hormone refractory prostate cancer cells by using an activated rubber/resin form (RB), far-infrared ray emitter, with or without sodium butyrate (SB). The growth of three human prostate cancer cell lines (Du145, PC-3 and LNCaP) was suppressed _in vitro_ and _in vivo_ by using RB, and the cells were eradicated with RB + 3 mM SB. G1 arrest and apoptotic pathway proteins were induced by RB with intensified expressions of apoptosis - related mRNA on cDNA microarray. RB radiates the infra-red rays of the 4 to 25 [mu]m wavelengths to an object which exert a favorable influence on a cancer control. These results may render us a new therapeutic modality in hormone refractory prostate cancer

    Probing the crossover in CO desorption from single crystal to nanoparticulate Ru model catalysts

    Get PDF
    cited By 10International audienceUsing model catalysts, we demonstrate that CO desorption from Ru surfaces can be switched from that typical of single crystal surfaces to one more characteristic of supported nanoparticles. First, the CO desorption behaviour from Ru nanoparticles supported on highly oriented pyrolytic graphite was studied. Both mass-selected and thermally evaporated nanoparticles were deposited. TPD spectra from the mass-selected nanoparticles exhibit a desorption peak located around 410 K with a broad shoulder extending from around 480 K to 600 K, while spectra obtained from thermally evaporated nanoparticles exhibit a single broad feature from ∼350 K to ∼450 K. A room temperature deposited 50 Å thick Ru film displays a characteristic nanoparticle-like spectrum with a broad desorption feature at ∼420 K and a shoulder extending from ∼450 K to ∼600 K. Subsequent annealing of this film at 900 K produced a polycrystalline morphology of flat Ru(001) terraces separated by monatomic steps. The CO desorption spectrum from this surface resembles that obtained on single crystal Ru(001) with two large desorption features located at 390 K and 450 K due to molecular desorption from terrace sites, and a much smaller peak at ∼530 K due to desorption of dissociatively adsorbed CO at step sites. In a second experiment, ion sputtering was used to create surface defects on a Ru(0 1 54) single crystal surface. A gradual shift away from the desorption spectrum typical of a Ru(001) surface towards one resembling desorption from supported Ru nanoparticles was observed with increasing sputter time. © 2011 the Owner Societies

    デリバティブ取引とリスク管理 : 数学の実務への展開

    No full text
    1.はじめに 2.デリバティブ取引 3.デリバティブの評価 4.技術的な発展 5.新しい問題 6.最後に科学・技術の研究課題への数学アプローチ : 数学モデリングの基礎と展開応用
    corecore