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  We introduce a new effective method to control hormone refractory 

prostate cancer cells by using an activated rubber/resin form (RB), 

far-infrared ray emitter, with or without sodium butyrate (SB). The growth 

of three human prostate cancer cell lines (Du145, PC-3 and LNCaP) was 

suppressed in vitro and vivo by using RB, and the cells were eradicated 

with RB + 3 mM SB. G1 arrest and apoptotic pathway proteins were 

induced by RB with intensified expressions of apoptosis - related mRNA 

on cDNA microarray. RB radiates the infra-red rays of the 4 to 25 μm 

wavelengths to an object which exert a favorable influence on a cancer 

control.  These results may render us a new therapeutic modality in 

hormone refractory prostate cancer. 

 

 

 

 

 

 

 

 

 

 

 



 3

 

Prostate cancer is the most common malignancy in men in the USA, with 218,890 

new cases and 27,050 deaths estimated in 2007 1. Treatment options for early-stage 

prostate cancer are well defined, and localized prostate cancer can be cured by 

several therapeutic strategies. However, the outcome is still disappointing in 

advanced prostate cancer 2. A variety of chemotherapeutic approaches, including 

docetaxel, have been tried to control hormone-refractory prostate cancer, but none are 

yet fully satisfactory in terms of complete cure, with the least number of side effects 3. 

An effective new modality for the treatment of hormone refractory prostate cancer is 

urgently needed.  

  Current studies on cancer control have focused on cancer-specific genes and 

proteins to control cancer 4, with which there are some expectations of cancer control 

in vitro and/or in vivo 4, 5. However, the most difficult issue in studies of cancer 

control is the cancer itself, since it is already established when it is studied. We know 

that it constantly changes its own DNA arrangement and increases in size, which 

leads to the death of the host. Cancer cells also have normal active genes for their 

survival and growth 6. On the other hand, genes to suppress cancer growth might 

become considerably silent during cancer growth 7. It is also considered that apoptotic 

pathways in cancer cells are inactivated or weakened 8.  It will be then very effective 

in cancer control if such an oncogenic environment in a man with cancer whose death 

pathways of cancer cells become silent is improved by applying a new method to 

reactivate silent and/or weakened pathways of apoptosis and its related genes.   In 
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order to reactivate these silent genes, we focused on both far-infrared rays and 

sodium butyrate (SB), natural histone deacetylase inhibitors (HDACi) in human 

intestine.  

  Under conditions in which the DNA loop is open widely for SB, and more active 

movements of molecules in nuclei occur with an increase of the temperature induced 

by far-infrared rays, various transcription factors have more efficient access to the 

promoter region of the structural genes.  

  For this purpose, we chose an activated rubber/resin form made of natural or 

synthetic rubber/resin (RB) originally applied to a wetsuit, and known to be 

far-infrared ray emitter. We assessed the ability of this activated form in combination 

with SB to control human prostate cancer cells such as DU145, PC-3 and LNCaP 9, 10. 

Furthermore, we propose a new concept to explain the observed efficacy of RB in the 

growth control of prostate cancer cells using the Planck and Arrhenius formula 11, 12. 

RB increased the temperature by 0.36°C constantly in the area exposed, which 

resulted in the reactivation of mRNA expression of apoptotic pathways in the prostate 

cancer cells on cDNA microarray analysis. These phenomenon by RB were 

confirmed through a set of both in vitro and in vivo experiments. This could be 

theoretically brought by the effects of the structure-based substance wave at a 

frequency of 2.23×1033/s radiated from the molecules by resonance when exposed to 

far-infrared rays.  
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Spectral emissivity in the infrared region 

Spectral emittance from 4 to 25 μm was close to 100 % (Fig.1a). Transmissivity was 

Zero (0) at 4000 - 400cm-1 (Data not shown). The temperature of the medium 

increased by 0.36°C (37.32 ± 0.405 vs 37.68 ± 0.440, n = 12) by far-infrared rays 

emitted from RB which were placed up and down outside the culture dish (Fig.1b).    

 

Effects of RB ±SB on prostate cancer cells 

 We started the following experiments after the cell culture for 3 weeks with or 

without RB. Since preliminary cDNA microarray of the cancer cells cultured showed 

incremental increases of mRNA expression from the 1st day to 3ird week (Data not 

shown). We observed a significant decrease in cell proliferation in DU145, PC-3, and 

LNCaP cell lines after 8 days of treatment with RB ± SB (Fig.1c).  However, each 

cell line showed a somewhat different response to RB, SB and RB+SB. After 8 days, 

RB inhibited cell proliferation by 59.2% (P<0.0001) in DU145 cells (Fig. 2a and 

Supplementary Table 1), 56.9% P<0.0001) in PC-3 (Fig. 2b and Supplementary Table 

1), and 31.5% (P<0.0001) in LNCaP cells (Fig. 2c and Supplementary Table 1). 

Treatment with RB+SB (2 mM) showed a stronger inhibition of cell growth than 

treatment with 2mM SB alone after 8 days: 4.4–99.1% (P<0.0001) in DU145 cells 

(Fig. 2a and Supplementary Table 1), 27.7–93.4% (P<0.0001) in PC-3 cells (Fig. 2b 

and Supplementary Table 1) and 87.7–100% (P<0.0001) in LNCaP cells (Fig. 2c and 

Supplementary Table 1). The cells (DU145, PC-3 and LNCaP) with RB attachment 

died in the presence of 3mM SB. These date indicated that hormone-refractory 
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prostate cancer cells DU145 and PC-3 were significantly suppressed by RB+SB, 

which had a stronger growth inhibitory effect than that of SB alone. 

  Human prostate epithelial cells (PrEC) were subjected to the same treatment. After 

8 days, 1, 2 and 3 mM SB inhibited cell proliferation by 27.3% (P<0.01), 24.0% 

(P<0.01) and 24.3% (P<0.01), respectively (Fig. 2d and Supplementary Table 1). 

Surprisingly, we observed a significantly increase in the number of normal PrEC 

following RB+SB treatment. Eight days treatment with RB+SB (0, 1, 2 and 3 mM) 

increased the number of cells by 69.5% (P<0.01), 53.6% (P<0.001), 50.0% (P<0.001) 

and 192.8% (P<0.0001), respectively (Fig. 2d and Supplementary Table 1). These 

results suggest that RB is not toxic to human PrEC, but SB is toxic to a certain extent. 

Interestingly, RB increased the number of human PrEC in culture.  

 

Gene expression on cDNA microarray 

Expression of mRNA in the presence of RB was recognized from day 1, and 

increased up to week 3 in the preliminary experiment. Representative results of 

hierarchical clustering human cDNA (1.2k) microarray analysis after 3 and 4 weeks’ 

exposure of cells to RB is shown in Fig. 3A. RB showed remarkable activation of 

mRNA in DU145, PC-3 and LNCaP cells after 3 and 4 weeks. In combination of 2 

mM SB for 7 days which the culture medium were exposed by RB for 3 weeks, 

mRNA expression was intensified in the presence of 2 mM SB which the culture 

medium were not exposed by RB for 3 weeks. mRNA for TNF associated genes 

related to apoptosis was strongly expressed which was confirmed by RT-PCR (Fig. 
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3b).  Messenger RNA related to MAP kinase and ubiquities pathways were not 

activated by RB (data not shown). 

Effect of RB on the prostate cancer cell cycle  

In the cell cycle analysis, RB decreased the percentage of DU145 cells in S phase 

(Fig. 4a and Supplementary Table 2). The result of laser scanning cytometry indicated 

a 71% (P<0.01) decrease in the S phase fraction of cells when DU145 cells were 

treated with RB for 4 weeks. SB also inhibited the progression of DU145 cells from 

G0/G1 to S phase; at that time cells are committed to replication. These results 

indicated that RB induced G1 arrest. Similar changes were observed in PC-3 and 

LNCaP cells (Fig. 4a and Supplementary Table 2). The results suggest that inhibition 

of deregulated cell cycle progression is one of the molecular events associated with 

selective anticancer efficacy of RB in prostate cancer cells. 

  The regulatory proteins of the checkpoint of G1/S such as CDK inhibitors (p21 and 

p27), CDK2, CDK4 and CDK6 were affected by RB and RB+SB treatment. The 

results showed that the expression of p21 and p27 was significantly increased in 

DU145 and PC-3 cells with RB and RB+SB treatment, but not in LNCaP cells. The 

expression of CDK2 was decreased in LNCaP cells, and the expression of CDK4 was 

decreased in DU145 and PC-3 cells with RB and RB+SB treatment. The expression 

of CDK6 was decreased in DU145 and PC-3 cells with RB treatment, but increased 

by RB+SB (Fig. 5a). These results suggested that RB and RB+SB caused G1 arrest by 

up-regulation of p21 and p27 expression in DU145 and PC-3 cells, and inhibition of 

CDK2, CDK4 or CDK6 in all prostate cancer cells.   
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RB ± SB induce apoptosis in prostate cancer cells 

After treatment of prostate cancer cells with RB for 4 weeks, apoptotic cells were 

detected by laser scanning cytometry. DU145, PC-3 and LNCaP cells treated with RB 

for 4 weeks exhibited a sub-G1 peak in laser scanning cytometry (Fig. 4a). Cell 

morphology under laser scanning microscopy showed condensed and fragmented 

nuclei in these prostate cancer cells (Fig. 4b). The results showed that RB induced 

apoptosis in all three prostate cancer cell lines.  

  Several proteins, including poly (ADP-ribose) polymerase (PARP), play an 

important role in the condensation and degradation of cell chromatin through 

apoptotic death. The cleavage of PARP protein is considered as an important 

biomarker of apoptosis. RB treatment caused a moderate degradation of PARP 

protein in LNCaP cells. RB+SB treatment caused significant degradation of PARP 

protein in all prostate cancer cells, and its degradation was stronger than that with SB 

treatment (Fig. 5b). These results suggested that RB and RB+SB induced apoptosis of 

prostate cancer cells by activating PARP cleavage. 

  We also analyzed the level of caspase-3, which is known to be the main effector 

caspase in most mammalian cells, following 1week treatment with SB. We showed 

that the expression of procaspase-3 was significantly down-regulated in DU145, 

PC-3 and LNCaP cells undergoing apoptosis during treatment with RB+SB, and the 

degradation was stronger than that with SB treatment alone. Expression of 

procaspase-3 was also significantly down-regulated in LNCaP cells and slightly 
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down-regulated in PC-3 cells during treatment with RB for 4 weeks (Fig. 5b). These 

results suggested that RB- and RB+SB-induced apoptosis of prostate cancer cells 

were mediated through caspase-3.  

  RB treatment caused significant induction of Bcl-2 and Bcl-xL expression. 

Furthermore, expression of Bcl-2 was significantly decreased in LNCaP cells, Bcl-xL 

expression was moderately decreased in PC-3 and LNCaP cells, and Bax expression 

was not significantly changed in PC-3 and LNCaP cells (Fig, 5b). In DU145 cells, 

Western blot analysis did not reveal the presence of Bcl-2 or Bax. Treatment of cells 

with RB+SB significantly induced the expression of Bcl-2 in PC-3 cells, and the 

degradation was stronger than that with SB treatment. These data suggested that RB 

and RB+SB induced apoptosis of PC-3 and LNCaP cells through the Bcl-2- and 

Bcl-xL-mediated apoptosis pathway. 

  As shown in Fig. 5b, DU145 and LNCaP cells treated with RB+SB exhibited a 

significant increase in the expression of TRADD and FADD, death adaptor proteins, 

and the increase was greater than that with SB treatment alone. DU145 cells treated 

with RB also exhibited a significant increase in the expression of Fas death receptor 

protein. These data suggested that RB induced apoptosis of DU145 cells through a 

Fas-mediated pathway. RB+SB also induced apoptosis in DU145 and LNCaP cells 

through a Fas-mediated pathway.  

 

Apoptotic effect of RB on tumor growth in vivo 

We examined the inhibitory effects of RB to the growth of prostate cancer cells 
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transplanted into nude mice. The growth curves for prostate cancer xenografts are 

shown in Figure 6 a-c. There was a significant decrease of 16.7% (*p<0.05) in tumor 

volume on the 70th day in DU-145, 53.1% (*p<0.05) on the 74th day in PC-3, and 

67.1% (*p<0.05) on the 15th day in LNCaP as a result of RB treatment. The result 

showed that RB had an inhibitory effect in vivo against proliferation of human 

prostate cancer cells. 

  Apoptosis was demonstrated by the TUNEL reaction in the xenografts mice tissues. 

Apoptosis was clearly shown by scattered TUNEL-positive cells in sections of all 

prostate cancer tissue when the xenografts mice were exposed to RB, but not shown 

without RB exposure (Fig 6d). 
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Discussion 

The response of hormone-refractory prostate cancer to chemotherapy remains modest, 

necessitating the search for new forms of treatment to improve the prognosis. This 

study is believed to be the first to show that exposure to RB was effective at 

inhibiting the growth of human prostate cancer cells (DU145, PC-3 and LNCaP), and 

RB+SB at low concentration induced complete eradication of these cancer cells in 

vitro. In addition tumor growth of all three prostate cancer cells was also significantly 

suppressed in vivo. Our data also suggest that RB-induced growth inhibition of 

cancer cells was associated with strong G1 phase arrest, by increasing p21 expression, 

which resulted in CDK2, CDK4 or CDK6 down-regulation. The apoptosis induced by 

RB and RB+SB is thought to be mediated by a Bcl-2 and Fas signaling pathway. 

  The genes involved in the suppression of cancer growth are more or less 

inactivated in patients with cancer, which results in oncogene–activation in these 

patients 7. This condition may be induced by the gene mutation, but usually it 

explains approximately 10% of all cancers. The most problem of cancer research is in 

the object of research, since all kinds of scientific analysis including gene mutation in 

cancer cells is done after cancer is established. The total number of genes in humans 

is 20 000–25 000 13, but the number of active genes decreases with aging 14.   

 It is well known that histone acetyl transferase opens up the space of histones that 

allows specific transcription factors to bind the promoter to activate the structure 

gene, this will produce proteins available for keeping a man in healthy homeostasis 

under normal condition 15. If cells are exposed to HDACis, it may be that the genes 
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remain active, which may give more opportunity for silent genes to be reactivated. In 

addition, the increase of temperature at a certain degree may give more chances of the 

transcription factors to bind the promoters by increasing rate of molecular collisions 

according to Arrhenius plot resulting in reactivation of the silent and/or inactive 

genes.   

  Taking into consideration that various kinds of gene activation in the cDNA 

microarray clustering analysis, and the inhibition of cancer growth observed by the 

exposure of prostate cancer cells to RB, it appears that far-infrared rays play an 

important role in the gene activation.  

  The reason why RB has such high emittance of far-infrared rays is due to many 

closed cells exist in the RB (20 to 30 cells / mm2). Since RB has much larger 

development area and can receive many infrared rays e.g. from the sun and heat - 

generating objects.   

  When a spectral emittance was measured, it was found that RB has a spectral 

emittance close to “1 (100%)” in the area from 4 μm to 25 μm, which is equal to a 

spectral emittance of virtual black body similar to a sunspot.   

  The temperature difference after exposure of the culture medium to RB is only 

0.36°C. The main wavelength of far-infrared rays emitted form RB is 4–25 μm. 

Calculating from the velocity of light, the frequency of far-infrared rays at 4 - 25 μm 

is 1.2 ~ 7.5 x 1013, which is not a sufficient energy level to increase the temperature of 

the culture medium by 0.36°C. The energy needed to increase the temperature of 1 g 

water by 1°C is 4.184 J ⋅ s. Therefore, it will be 1.48 J ⋅ s in order to increase the 

http://en.wikipedia.org/wiki/Water
http://en.wikipedia.org/wiki/Degree_Celsius
http://en.wikipedia.org/wiki/Joule
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temperature by 0.36°C. From Planck’s formula, the frequency of the wave to raise the 

temperature by 0.36°C must be 2.23×1033 /s 16. To explain this discrepancy between 

the two energy levels, it might be assumed that there exists the structure-based 

substance wave at frequency of 2.23×1033 /s, which is probably generated from 

molecules by resonance in culture media and cells when they are exposed to 

far-infrared rays. The increased temperature caused by constant exposure to 

far-infrared rays increases the collision rate among molecules, according to the 

equation of the Arrhenius plot17. The increase of collision rate may be small, but 

estimating the tremendous numbers of the combinations of molecules in the cells, the 

collisions may be significant to activate interrelation among the molecules necessary 

for activation of the silent genes, which induced mRNA re-expression and 

re-activation of apoptotic pathway as were shown in the Figure 3a & b. Acetyl 

transferase alters chromatin structure and dynamically affects transcription regulation. 

HDACis keep an altered chromatin structure and are highly effective in up-regulating 

suppressor gene expression. The increased temperature induced by far-infrared rays 

may lead to up-regulation of suppressor and/or apoptotic genes, especially in the 

presence of HDACi in cancer cells. In this study, treatment of cells with RB+SB 

significantly induced expression of Bcl-2 and Bcl-XL, and considerably increased 

expression of TRADD and FADD proteins. 

  Apoptosis plays an important role in the renewal of the normal and neoplastic 

prostatic epithelium, and reduced apoptosis is associated with the progression of 

locally invasive prostate cancers to metastatic disease 18, 19. Restoring apoptosis has 
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been suggested as a possible therapeutic strategy, therefore, a great deal of research 

has been devoted to understanding the abnormalities in the cellular machinery that 

cause resistance to apoptosis in prostate cancer cells 19. Increasing evidence indicates 

that impaired ability to undergo apoptosis plays an important role in the evolution 

from androgen-dependent to androgen-independent prostate cancer, as well as drug 

resistance 20. Thus, much effort is being directed toward finding ways to increase 

apoptosis in prostate cancer. In this study, we showed that RB and RB+SB induced 

apoptosis. In addition, it is very important that RB did not harm the growth of normal 

prostate epithelium, and rather increased the number of normal prostate epithelial cell 

in the presence of SB, otherwise growth was suppressed by SB. 

  This is believed to be the first report of the biological action of RB in prostate 

cancer cell lines. We demonstrated that prostate cancer cell lines were sensitive to RB 

and RB+SB in vitro and in vivo. Two distinct signaling pathways were involved in 

RB-mediated cell growth arrest and induction of apoptosis. These results present a 

new therapeutic modality, especially in hormone-refractory prostate cancer, and 

theoretically RB might be helpful to control various kinds of cancer. 
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Methods Summary 

The activated form (RB) made of natural or synthetic rubber/resin was obtained from 

Yamamoto (Osaka, Japan) (Fig. 1d). RB consisted of rubber, lime stone and titanium 

metal powder in a honeycomb structure comprised of micron-sized cells, and had the 

ability to radiate far-infrared rays (4–25 μm) and maintain body temperature. The 

spectral emissivity 2500 cm-1 – 400 cm-1 (4 μm – 25 μm) was measured at the 

measuring temperature 90°C, Discrimination 8 cm-1 and the integrated 200 times 

testing by SIMADZ Fourier transform infrared spectrophtometer FTIR - 4300 (Figure 

1d). Spectral Transmission of RB in the infrared region was measured by 

SHIMADZU infrared spectrophotometer IR-470. 

  The DU145, PC-3 and LNCaP cell lines were maintained in minimum essential 

medium, F-12K medium and RPMI medium. The temperature of the culture medium 

that was exposed to RB was measured in an atmosphere of 5% CO2 at 37°C by a 

digital thermometer, after the door of the incubator was kept closed for 30 min. 

  For determining cell proliferation, viable cell numbers were counted using the Cell 

Proliferation Kit II (Roche Diagnostics, Mannheim, Germany) based on the XTT 

assay 21. 

  Hierarchical clustering was applied to both axes using the unweighted pair-group 

method, with the arithmetic average as implemented in the program GeneSpring5.1 

(Agilent Technologies, Santa Clara, CA, USA). Messenger RNA for TNF associated 

genes related to apoptosis which showed strong signal intensity were confirmed by 

RT-PCR independently 22.  



 17

  Cell cycle and apoptosis analysis were examined under a laser scanning 

microscope (Olympus BX51; Olympus Optics, Tokyo, Japan) 23. Effect of RB and 

RB+SB on expression of apoptotic proteins was performed with Western blotting. 

  To explore the relevance of our findings in vivo, we examined the inhibitory effects 

of RB by tumor xenograft studies, apoptosis was demonstrated by the TUNEL 

reaction in the xenografts mice tissues. 
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Table 1 | Effect of RB, SB and RB + SB on the growth of cells 

                       Alive cell number (%) on the 8th day                              

              DU145                 PC-3                    LNCaP                  PrEC           

  SB      RB (-)     RB (+)      RB (-)       RB (+)       RB (-)     RB (+)       RB (-)       RB (+)            

0 mM   549.6 ± 0.4   224.3 ± 5.3*  859.9 ± 45.9  370.8 ± 69.9*  401.4 ± 23.4  274.8 ± 18.2*  100.0 ± 9.7   169.2 ± 18.3+ 

1 mM   546.4 ± 0.1    56.8 ± 9.9*  847.0 ± 29.9  204.9 ± 44.6*  146.9 ± 10.1   22.0 ± 10.6*   73.2 ± 7.9+   111.6 ± 17.9# 

2 mM   525.4 ± 10.5    4.8 ± 0.4*  622.1 ± 96.9   38.0 ± 13.2*   49.2 ± 4.7    0.0 ± 0.0*    75.7 ± 7.8+  111.4 ± 12.7# 

3 mM   100.0 ± 15.0    0.0 ± 0.0*  301.4 ± 47.8    0.0 ± 0.0*     6.8 ± 2.2    0.0 ± 0.0*    76.8 ± 8.1+  224.9 ± 16.9* 

Data shown are the mean ± SD (%). +, p < 0.01; #, p < 0.001; *, p < 0.0001.  PrEC: prostate epithelial cell 

 

  
Table 2 | Effect of RB treatment on cell cycle and apoptosis  

Cell line     RB         G0         G1         S         G2         M       sub-G1      

DU145      −         0.3 ± 0.2    56.1 ± 1.8    15.4 ± 1.5    14.9 ± 0.9     0.9 ± 0.5     0.5 ± 0.1   

           +         1.4 ± 0.5    67.5 ± 3.1+    1.5 ± 1.3#     9.8 ± 1.9     0.6 ± 0.2     6.4 ± 0.4*   

PC-3         −        12.4 ± 1.3    54.9 ± 1.2     6.9 ± 0.2      6.9 ± 1.1     1.4 ± 0.1     0.7 ± 0.4   

           +         2.3 ± 0.2    82.8 ± 1.9*    1.4 ± 0.2*     2.2 ± 0.4     0.2 ± 0.1     6.2 ± 0.2*   

LNCaP     −         0.4 ± 0.2     59.3 ± 1.4   16.1 ± 0.7      12.5 ± 1.5     0.9 ± 0.3    0.1 ± 0.1   

              +        0.8 ± 0.8     63.3 ± 2.3    12.7 ± 1.3φ     11.3 ± 1.5     0.9 ± 0.7    3.1 ± 0.2*   

Data shown are the mean ± SD (%). φ, p < 0.05; +, p < 0.01; #, p < 0.001; *, p < 0.0001        

 

 

 

 

Table 1 | Effect of RB, SB and RB + SB on the growth of prostate cancer cell lines and human prostate 

epithelial cells 

 

Table 2 | Effect of RB treatment on cell cycle and apoptosis in DU145, PC-3, and LNCaP cells 
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Figure legends 

 

Figure 1 | The spectral emissivity and transmissivity of RB, and 

experimental design. (a) The spectral emissivity (4 μm – 25 μm) was measured at 

the measuring temperature 90°C. The respective spectrum of the spectral emissivity 

of a dummy blackbody as well as of RB are shown. Conversion formula is shown as 

Xμm =10000/Y cm-1 (for example: 10000/400 cm-1=25 μm). Spectral Transmission 

of RB in the infrared region was measured, and transmissivity was Zero (0) at 4000 - 

400 cm-1 (Data not shown). (b) Prostate cancer cells were cultured in 10-cm dishes 

which were exposed to RB whose silver color side toward cells. (c) Prostate cancer 

cells were cultured with or without RB for 3 weeks, and SB was then added to the 

culture medium at 2 mM for 1 week. (d) Activated form of RB with a honeycomb 

structure comprised of micron-sized cells (20-30/mm3) inside has the ability to 

radiate far-infrared rays (4–25 μm). 

 

Figure 2 | Effects of RB, SB and RB+SB on the growth of prostate cancer 

cell lines and human prostate epithelial cells. (a) DU145, (b) PC-3, (c) 

LNCaP, and (d) human prostate epithelial cells. DU145, PC-3, LNCaP and human 

prostate epithelial cells were treated with RB with or without 0.2% PBS (–) or 1, 2 

and 3 mM SB for 8 days; cells were counted after 2, 5 and 8 days by XTT assay. Data 

from three independent experiments are shown as means ± SD. +P<0.01, #P<0.001, 

*P<0.0001. 
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Figure 3 | Hierarchical clustering analysis in treatment of prostate cancer 

cell lines by RB, SB and RB+SB. (a) Gene expression profile. Representative 

results of hierarchical clustering human cDNA (1.2k) microarray analysis after 3 and 

4 weeks exposure to RB are shown. RB showed remarkable activation of mRNA in 

DU145, PC-3, and LNCaP cells. In combination of 2 mM SB for 7 days which the 

culture media were exposed by RB for 3 weeks, mRNA expressions were intensified 

in the presence of 2 mM SB which the culture media were exposed by RB for 3 

weeks. (b) mRNA of TNF associated genes was activated in the presence of RB for 3 

weeks. Each row represents the mean of signal log ratios using a color-code scale. 

Red represents expression that was two-fold greater than the reference value; pink 

represents expression that was 1.4-fold greater than reference; and green represents 

expression that was 0.5-fold less than reference. 

 

Figure 4 | Effect of RB on the cell cycle and apoptosis in prostate cancer 

cell lines. DU145, PC-3, and LNCaP cells were treated with RB for 7 days and 

stained for nuclear DNA with propidium iodide (PI). (a) The intensity of PI staining 

was analyzed with the use of a microscope-based multiparameter laser scanning 

cytometer. 1, G0; 2, G1; 3, S; 4, G2; 5, M; 6, apoptosis (b) Apoptosis (arrow) induced 

by RB was observed by laser scanning microscopy. Cancer cells were fragmented. 

 

Figure 5 | Effect of RB and RB+SB on the expression of cell cycle 

regulators (a) and apoptosis-associated gene expression (b). The 



 24

expression of p21, p27, CDK2, CDK4, CDK6, Fas, FADD, TRADD, Bcl-2, Bcl-xL, 

Bax, procaspse-3 and PARP were determined by Western blotting. Equal loading (30 

μg) was confirmed by stripping immunoblots and reprobing them for β-actin. The 

experiment was independently repeated three times with similar results.  

. 

Figure 6 | Inhibition of prostate cancer tumor growth and apoptosis by 

RB in vivo. (a-c) RB effects on tumor volumes in vivo: Tumor volumes are 

chronogically shown in RB-treated and – untreated xenografts as described in 

methods. Each column shows the mean ± S.E.M. of tumor volumes measured in 4 

xenografts mice. There was a significant decrease of 16.7% (*p<0.05) in tumor 

volume on the 70th day in DU-145, 53.1% (*p<0.05) on the 74th day in PC-3, and 

67.1% (*p<0.05) on the 15th day in LNCaP as a result of RB treatment. (d) 

Representative micrograph of DNA end-labelling (TUNEL) of tissue sections from 

mice by RB (+) and RB (-) groups. TUNEL labelling of DU145, PC-3 and LNCaP 

sections from RB-treated mouse reveals positive staining and propidium iodide - 

detected DNA strand break (arrow). Magnification ×400. Neither TUNEL-positive 

nor DNA strand breaks cells were observed in cancer tissue sections when they were 

not exposed to RB. Magnification ×400.  
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