57 research outputs found

    Response of convection electric fields in the magnetosphere to IMF orientation change

    Full text link
    [1] The transient response of convection electric fields in the inner magnetosphere to southward turning of the interplanetary magnetic field (IMF) is investigated using in‐situ electric field observations by the CRRES and Akebono spacecraft. Electric fields earthward of the inner edge of the electron plasma sheet show quick responses simultaneously with change in ionospheric electric fields, which indicates the arrival of the first signal related to southward turning. A coordinated observation of the electric field by the CRRES and Akebono spacecraft separated by 5 RE reveals a simultaneous increase in the dawn‐dusk electric field in a wide region of the inner magnetosphere. A quick response associated with the southward turning of the IMF is also identified in in‐situ magnetic fields. It indicates that the southward turning of the IMF initiates simultaneous (less than 1 min) enhancements of ionospheric electric fields, convection electric fields in the inner magnetosphere, and the ring or tail current and region 2 FACs. In contrast, a quick response of convection electric fields is not identified in the electron plasma sheet. A statistical study using 161 events of IMF orientation change in 1991 confirms a prompt response within 5 min for 80% of events earthward of the electron plasma sheet, while a large time lag of more than 30 min is identified in electric fields in the electron plasma sheet. The remarkable difference in the response of electric fields indicates that electric fields in the electron plasma sheet are weakened by high conductance in the magnetically conjugated auroral ionosphere.https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009JA014277https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009JA014277Published versio

    Direct CP, T and/or CPT violations in the K^0-\bar{K^0} system - Implications of the recent KTeV results on 2π2\pi decays -

    Full text link
    The recent results on the CP violating parameters Re(e'/e) and \Delta\phi = \phi_{00}-\phi_{+-} reported by the KTeV Collaboration are analyzed with a view to constrain CP, T and CPT violations in a decay process. Combining with some relevant data compiled by the Particle Data Group, we find Re(e_2-e_0) = (0.85 +- 3.11)*10^{-4} and Im(e_2-e_0) = (3.2 +- 0.7)*10^{-4}, where Re(e_I) and Im(e_I) represent respectively CP/CPT and CP/T violations in decay of K^0 and \bar{K^0} into a 2\pi state with isospin I.Comment: 7 pages, No figure

    Sq and EEJ—A Review on the Daily Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents

    Full text link

    The Space Physics Environment Data Analysis System (SPEDAS)

    Get PDF
    With the advent of the Heliophysics/Geospace System Observatory (H/GSO), a complement of multi-spacecraft missions and ground-based observatories to study the space environment, data retrieval, analysis, and visualization of space physics data can be daunting. The Space Physics Environment Data Analysis System (SPEDAS), a grass-roots software development platform (www.spedas.org), is now officially supported by NASA Heliophysics as part of its data environment infrastructure. It serves more than a dozen space missions and ground observatories and can integrate the full complement of past and upcoming space physics missions with minimal resources, following clear, simple, and well-proven guidelines. Free, modular and configurable to the needs of individual missions, it works in both command-line (ideal for experienced users) and Graphical User Interface (GUI) mode (reducing the learning curve for first-time users). Both options have “crib-sheets,” user-command sequences in ASCII format that can facilitate record-and-repeat actions, especially for complex operations and plotting. Crib-sheets enhance scientific interactions, as users can move rapidly and accurately from exchanges of technical information on data processing to efficient discussions regarding data interpretation and science. SPEDAS can readily query and ingest all International Solar Terrestrial Physics (ISTP)-compatible products from the Space Physics Data Facility (SPDF), enabling access to a vast collection of historic and current mission data. The planned incorporation of Heliophysics Application Programmer’s Interface (HAPI) standards will facilitate data ingestion from distributed datasets that adhere to these standards. Although SPEDAS is currently Interactive Data Language (IDL)-based (and interfaces to Java-based tools such as Autoplot), efforts are under-way to expand it further to work with python (first as an interface tool and potentially even receiving an under-the-hood replacement). We review the SPEDAS development history, goals, and current implementation. We explain its “modes of use” with examples geared for users and outline its technical implementation and requirements with software developers in mind. We also describe SPEDAS personnel and software management, interfaces with other organizations, resources and support structure available to the community, and future development plans
    corecore