63 research outputs found
Response of convection electric fields in the magnetosphere to IMF orientation change
[1] The transient response of convection electric fields in the inner magnetosphere to southward turning of the interplanetary magnetic field (IMF) is investigated using in‐situ electric field observations by the CRRES and Akebono spacecraft. Electric fields earthward of the inner edge of the electron plasma sheet show quick responses simultaneously with change in ionospheric electric fields, which indicates the arrival of the first signal related to southward turning. A coordinated observation of the electric field by the CRRES and Akebono spacecraft separated by 5 RE reveals a simultaneous increase in the dawn‐dusk electric field in a wide region of the inner magnetosphere. A quick response associated with the southward turning of the IMF is also identified in in‐situ magnetic fields. It indicates that the southward turning of the IMF initiates simultaneous (less than 1 min) enhancements of ionospheric electric fields, convection electric fields in the inner magnetosphere, and the ring or tail current and region 2 FACs. In contrast, a quick response of convection electric fields is not identified in the electron plasma sheet. A statistical study using 161 events of IMF orientation change in 1991 confirms a prompt response within 5 min for 80% of events earthward of the electron plasma sheet, while a large time lag of more than 30 min is identified in electric fields in the electron plasma sheet. The remarkable difference in the response of electric fields indicates that electric fields in the electron plasma sheet are weakened by high conductance in the magnetically conjugated auroral ionosphere.https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009JA014277https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009JA014277Published versio
Direct CP, T and/or CPT violations in the K^0-\bar{K^0} system - Implications of the recent KTeV results on decays -
The recent results on the CP violating parameters Re(e'/e) and \Delta\phi =
\phi_{00}-\phi_{+-} reported by the KTeV Collaboration are analyzed with a view
to constrain CP, T and CPT violations in a decay process. Combining with some
relevant data compiled by the Particle Data Group, we find Re(e_2-e_0) = (0.85
+- 3.11)*10^{-4} and Im(e_2-e_0) = (3.2 +- 0.7)*10^{-4}, where Re(e_I) and
Im(e_I) represent respectively CP/CPT and CP/T violations in decay of K^0 and
\bar{K^0} into a 2\pi state with isospin I.Comment: 7 pages, No figure
Recommended from our members
Evidence for the In‐Situ Generation of Plasma Depletion Structures Over the Transition Region of Geomagnetic Low‐Mid Latitude
On a geomagnetic quiet night of October 29, 2018, we captured an observational evidence of the onset of dark band structures within the field-of-view of an all-sky airglow imager operating at 630.0 nm over a geomagnetic low-mid latitude transition region, Hanle, Leh Ladakh. Simultaneous ionosonde observations over New Delhi shows the occurrence of spread-F in the ionograms. Additionally, virtual and peak height indicate vertical upliftment in the F layer altitude and reduction in the ionospheric peak frequency were also observed when the dark band pass through the ionosonde location. All these results confirmed that the observed depletions are indeed associated with ionospheric F region plasma irregularities. The rate of total electron content index (ROTI) indicates the absence of plasma bubble activities over the equatorial/low latitude region which confirms that the observed event is a mid-latitude plasma depletion. Our calculations reveal that the growth time of the plasma depletion is ∼2 h if one considers only the Perkins instability mechanism. This is not consistent with the present observations as the plasma depletion developed within ∼25 min. By invoking possible Es layer instabilities and associated E-F region coupling, we show that the growth rate increases roughly by an order of magnitude. This strongly suggests that the Cosgrove and Tsunoda mechanism may be simultaneously operational in this case. Furthermore, it is also suggested that reduced F region flux-tube integrated conductivity in the southern part of onset region created conducive background conditions for the growth of the plasma depletion on this night
State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling
Climatic variabilities on millennial and longer time scales with a bipolar seesaw pattern have been documented in paleoclimatic records, but their frequencies, relationships with mean climatic state, and mechanisms remain unclear. Understanding the processes and sensitivities that underlie these changes will underpin better understanding of the climate system and projections of its future change. We investigate the long-term characteristics of climatic variability using a new ice-core record from Dome Fuji, East Antarctica, combined with an existing long record from the Dome C ice core. Antarctic warming events over the past 720,000 years are most frequent when the Antarctic temperature is slightly below average on orbital time scales, equivalent to an intermediate climate during glacial periods, whereas interglacial and fully glaciated climates are unfavourable for a millennial-scale bipolar seesaw. Numerical experiments using a fully coupled atmosphere-ocean general circulation model with freshwater hosing in the northern North Atlantic showed that climate becomes most unstable in intermediate glacial conditions associated with large changes in sea ice and the Atlantic Meridional Overturning Circulation. Model sensitivity experiments suggest that the prerequisite for the most frequent climate instability with bipolar seesaw pattern during the late Pleistocene era is associated with reduced atmospheric CO2 concentration via global cooling and sea ice formation in the North Atlantic, in addition to extended Northern Hemisphere ice sheets
Development of the Metadata Database and Analysis Software for upper atmospheric studies by Inter-university Upper atmosphere Global Observation NETwork (IUGONET)
第3回極域科学シンポジウム 横断セッション「中層大気・熱圏」 11月26日(月)、27日(火) 国立極地研究所 2階ラウン
The Space Physics Environment Data Analysis System (SPEDAS)
With the advent of the Heliophysics/Geospace System Observatory (H/GSO), a complement of multi-spacecraft missions and ground-based observatories to study the space environment, data retrieval, analysis, and visualization of space physics data can be daunting. The Space Physics Environment Data Analysis System (SPEDAS), a grass-roots software development platform (www.spedas.org), is now officially supported by NASA Heliophysics as part of its data environment infrastructure. It serves more than a dozen space missions and ground observatories and can integrate the full complement of past and upcoming space physics missions with minimal resources, following clear, simple, and well-proven guidelines. Free, modular and configurable to the needs of individual missions, it works in both command-line (ideal for experienced users) and Graphical User Interface (GUI) mode (reducing the learning curve for first-time users). Both options have “crib-sheets,” user-command sequences in ASCII format that can facilitate record-and-repeat actions, especially for complex operations and plotting. Crib-sheets enhance scientific interactions, as users can move rapidly and accurately from exchanges of technical information on data processing to efficient discussions regarding data interpretation and science. SPEDAS can readily query and ingest all International Solar Terrestrial Physics (ISTP)-compatible products from the Space Physics Data Facility (SPDF), enabling access to a vast collection of historic and current mission data. The planned incorporation of Heliophysics Application Programmer’s Interface (HAPI) standards will facilitate data ingestion from distributed datasets that adhere to these standards. Although SPEDAS is currently Interactive Data Language (IDL)-based (and interfaces to Java-based tools such as Autoplot), efforts are under-way to expand it further to work with python (first as an interface tool and potentially even receiving an under-the-hood replacement). We review the SPEDAS development history, goals, and current implementation. We explain its “modes of use” with examples geared for users and outline its technical implementation and requirements with software developers in mind. We also describe SPEDAS personnel and software management, interfaces with other organizations, resources and support structure available to the community, and future development plans
- …