14 research outputs found

    Prediction model of obstructive sleep apneaā€“related hypertension: Machine learningā€“based development and interpretation study

    Get PDF
    BackgroundObstructive sleep apnea (OSA) is a globally prevalent disease closely associated with hypertension. To date, no predictive model for OSA-related hypertension has been established. We aimed to use machine learning (ML) to construct a model to analyze risk factors and predict OSA-related hypertension.Materials and methodsWe retrospectively collected the clinical data of OSA patients diagnosed by polysomnography from October 2019 to December 2021 and randomly divided them into training and validation sets. A total of 1,493 OSA patients with 27 variables were included. Independent risk factors for the risk of OSA-related hypertension were screened by the multifactorial logistic regression models. Six ML algorithms, including the logistic regression (LR), the gradient boosting machine (GBM), the extreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), bootstrapped aggregating (Bagging), and the multilayer perceptron (MLP), were used to develop the model on the training set. The validation set was used to tune the model hyperparameters to determine the final prediction model. We compared the accuracy and discrimination of the models to identify the best machine learning algorithm for predicting OSA-related hypertension. In addition, a web-based tool was developed to promote its clinical application. We used permutation importance and Shapley additive explanations (SHAP) to determine the importance of the selected features and interpret the ML models.ResultsA total of 18 variables were selected for the models. The GBM model achieved the most extraordinary discriminatory ability (area under the receiver operating characteristic curve = 0.873, accuracy = 0.885, sensitivity = 0.713), and on the basis of this model, an online tool was built to help clinicians optimize OSA-related hypertension patient diagnosis. Finally, age, family history of hypertension, minimum arterial oxygen saturation, body mass index, and percentage of time of SaO2 < 90% were revealed by the SHAP method as the top five critical variables contributing to the diagnosis of OSA-related hypertension.ConclusionWe established a risk prediction model for OSA-related hypertension patients using the ML method and demonstrated that among the six ML models, the gradient boosting machine model performs best. This prediction model could help to identify high-risk OSA-related hypertension patients, provide early and individualized diagnoses and treatment plans, protect patients from the serious consequences of OSA-related hypertension, and minimize the burden on society

    The Relationship Between Cognitive Dysfunction and Symptom Dimensions Across Schizophrenia, Bipolar Disorder, and Major Depressive Disorder

    Get PDF
    Background: Cognitive dysfunction is considered a core feature among schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD). Despite abundant literature comparing cognitive dysfunction among these disorders, the relationship between cognitive dysfunction and symptom dimensions remains unclear. The study aims are a) to identify the factor structure of the BPRS-18 and b) to examine the relationship between symptom domains and cognitive function across SZ, BD, and MDD.Methods: A total of 716 participants [262 with SZ, 104 with BD, 101 with MDD, and 249 healthy controls (HC)] were included in the study. One hundred eighty participants (59 with SZ, 23 with BD, 24 with MDD, and 74 HC) completed the MATRICS Consensus Cognitive Battery (MCCB), and 507 participants (85 with SZ, 89 with BD, 90 with MDD, and 243 HC) completed the Wisconsin Card Sorting Test (WCST). All patients completed the Brief Psychiatric Rating Scale (BPRS).Results: We identified five BPRS exploratory factor analysis (EFA) factors (ā€œaffective symptoms,ā€ ā€œpsychosis,ā€ ā€œnegative/disorganized symptoms,ā€ ā€œactivation,ā€ and ā€œnoncooperationā€) and found cognitive dysfunction in all of the participant groups with psychiatric disorders. Negative/disorganized symptoms were the most strongly associated with cognitive dysfunctions across SZ, BD, and MDD.Conclusions: Our findings suggest that cognitive dysfunction severity relates to the negative/disorganized symptom domain across SZ, BD, and MDD, and negative/disorganized symptoms may be an important target for effective cognitive remediation in SZ, BD, and MDD

    Design of a High Sensitivity Pirani Gauge Based on Vanadium Oxide Film for High Vacuum Measurement

    No full text
    We have designed a hot-plate-type micro-Pirani vacuum gauge with a simple structure and compatibility with conventional semiconductor fabrication processes. In the Pirani gauge, we used a vanadium oxide (VOx) membrane as the thermosensitive component, taking advantage of the high temperature coefficient of resistance (TCR) of VOx. The TCR value of VOx is āˆ’2%Kāˆ’1āˆ¼āˆ’3%Kāˆ’1, an order of magnitude higher than those of other thermal-sensitive materials, such as platinum and titanium (0.3%Kāˆ’1āˆ¼0.4%Kāˆ’1). On one hand, we used the high TCR of VOx to increase the Pirani sensitivity. On the other hand, we optimized the floating structure to decrease the thermal conductivity so that the detecting range of the Pirani gauge was extended on the low-pressure end. We carried out simulation experiments on the thermal zone of the Pirani gauge, the width of the cantilever beam, the material and thickness of the supporting layer, the thickness of the thermal layer (VOx), the depth of the cavity, and the shape and size. Finally, we decided on the basic size of the Pirani gauge. The prepared Pirani gauge has a thermal sensitive area of 130 Ɨ 130 Ī¼m2, with a cantilever width of 13 Ī¼m, cavity depth of 5 Ī¼m, supporting layer thickness of 300 nm, and VOx layer thickness of 110 nm. It has a dynamic range of 10āˆ’1~104 Pa and a sensitivity of 1.23 V/lgPa. The VOx Pirani was designed using a structure and fabrication process compatible with a VOx-based uncooled infrared microbolometer so that it can be integrated by wafer level. This work contains only our MEMS Pirani gauge device design, preparation process design, and readout circuit design, while the characterization and relevant experimental results will be reported in the future

    Sulforaphane Suppresses the Nicotine-Induced Expression of the Matrix Metalloproteinase-9 via Inhibiting ROS-Mediated AP-1 and NF-κB Signaling in Human Gastric Cancer Cells

    No full text
    Sulforaphane, a natural phytochemical compound found in various cruciferous vegetables, has been discovered to present anti-cancer properties. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in gastric cancer metastasis. However, the role of sulforaphane in MMP-9 expression in gastric cancer is not yet defined. Nicotine, a psychoactive alkaloid found in tobacco, is associated with the development of gastric cancer. Here, we found that sulforaphane suppresses the nicotine-mediated induction of MMP-9 in human gastric cancer cells. We discovered that reactive oxygen species (ROS) and MAPKs (p38 MAPK, Erk1/2) are involved in nicotine-induced MMP-9 expression. AP-1 and NF-κB are the critical transcription factors in MMP-9 expression. ROS/MAPK (p38 MAPK, Erk1/2) and ROS functioned as upstream signaling of AP-1 and NF-κB, respectively. Sulforaphane suppresses the nicotine-induced MMP-9 by inhibiting ROS-mediated MAPK (p38 MAPK, Erk1/2)/AP-1 and ROS-mediated NF-κB signaling axes, which in turn inhibit cell invasion in human gastric cancer AGS cells. Therefore, the current study provides valuable evidence for developing sulforaphane as a new anti-invasion strategy for human gastric cancer therapy

    Presentation_1_Prediction model of obstructive sleep apneaā€“related hypertension: Machine learningā€“based development and interpretation study.zip

    No full text
    BackgroundObstructive sleep apnea (OSA) is a globally prevalent disease closely associated with hypertension. To date, no predictive model for OSA-related hypertension has been established. We aimed to use machine learning (ML) to construct a model to analyze risk factors and predict OSA-related hypertension.Materials and methodsWe retrospectively collected the clinical data of OSA patients diagnosed by polysomnography from October 2019 to December 2021 and randomly divided them into training and validation sets. A total of 1,493 OSA patients with 27 variables were included. Independent risk factors for the risk of OSA-related hypertension were screened by the multifactorial logistic regression models. Six ML algorithms, including the logistic regression (LR), the gradient boosting machine (GBM), the extreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), bootstrapped aggregating (Bagging), and the multilayer perceptron (MLP), were used to develop the model on the training set. The validation set was used to tune the model hyperparameters to determine the final prediction model. We compared the accuracy and discrimination of the models to identify the best machine learning algorithm for predicting OSA-related hypertension. In addition, a web-based tool was developed to promote its clinical application. We used permutation importance and Shapley additive explanations (SHAP) to determine the importance of the selected features and interpret the ML models.ResultsA total of 18 variables were selected for the models. The GBM model achieved the most extraordinary discriminatory ability (area under the receiver operating characteristic curve = 0.873, accuracy = 0.885, sensitivity = 0.713), and on the basis of this model, an online tool was built to help clinicians optimize OSA-related hypertension patient diagnosis. Finally, age, family history of hypertension, minimum arterial oxygen saturation, body mass index, and percentage of time of SaO2 ConclusionWe established a risk prediction model for OSA-related hypertension patients using the ML method and demonstrated that among the six ML models, the gradient boosting machine model performs best. This prediction model could help to identify high-risk OSA-related hypertension patients, provide early and individualized diagnoses and treatment plans, protect patients from the serious consequences of OSA-related hypertension, and minimize the burden on society.</p
    corecore