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Background: Obstructive sleep apnea (OSA) is a globally prevalent disease

closely associated with hypertension. To date, no predictive model for

OSA-related hypertension has been established. We aimed to use machine

learning (ML) to construct a model to analyze risk factors and predict OSA-

related hypertension.

Materials and methods: We retrospectively collected the clinical data of OSA

patients diagnosed by polysomnography from October 2019 to December

2021 and randomly divided them into training and validation sets. A total

of 1,493 OSA patients with 27 variables were included. Independent risk

factors for the risk of OSA-related hypertension were screened by the

multifactorial logistic regression models. Six ML algorithms, including the

logistic regression (LR), the gradient boosting machine (GBM), the extreme

gradient boosting (XGBoost), adaptive boosting (AdaBoost), bootstrapped

aggregating (Bagging), and the multilayer perceptron (MLP), were used

to develop the model on the training set. The validation set was used

to tune the model hyperparameters to determine the final prediction

model. We compared the accuracy and discrimination of the models to

identify the best machine learning algorithm for predicting OSA-related

hypertension. In addition, a web-based tool was developed to promote its

clinical application. We used permutation importance and Shapley additive

explanations (SHAP) to determine the importance of the selected features and

interpret the ML models.

Results: A total of 18 variables were selected for the models. The GBM model

achieved the most extraordinary discriminatory ability (area under the receiver
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operating characteristic curve = 0.873, accuracy = 0.885, sensitivity = 0.713),

and on the basis of this model, an online tool was built to help clinicians

optimize OSA-related hypertension patient diagnosis. Finally, age, family

history of hypertension, minimum arterial oxygen saturation, body mass

index, and percentage of time of SaO2 < 90% were revealed by the SHAP

method as the top five critical variables contributing to the diagnosis of

OSA-related hypertension.

Conclusion: We established a risk prediction model for OSA-related

hypertension patients using the ML method and demonstrated that among

the six ML models, the gradient boosting machine model performs best. This

prediction model could help to identify high-risk OSA-related hypertension

patients, provide early and individualized diagnoses and treatment plans,

protect patients from the serious consequences of OSA-related hypertension,

and minimize the burden on society.

KEYWORDS

obstructive sleep apnea, hypertension, machine learning, risk factor, Shapley additive
explanations, gradient boosting machine (GBM)

Introduction

Obstructive sleep apnea (OSA) is a sleep disorder
characterized by intermittent hypoxemia, autonomic
fluctuation, and sleep fragmentation. As of 2019, the prevalence
of OSA aged 30–69 years (men and women) in China has
reached 24.2%, ranking first in the world (1). Aside from the fact
that OSA causes difficult symptoms, many studies demonstrated
that OSA is closely associated with many complications, such
as cardiovascular diseases, metabolic disorders, and cognitive
impairment (2–4). Among them, cardiovascular diseases
have received extensive attention because of their serious
consequences and high morbidity, especially hypertension.
Observational studies have illustrated that 45–68% of subjects
with OSA have hypertension (5, 6), and the prevalence of OSA
is more than 30% among hypertension patients (7).

Hypertension that is primarily caused or exacerbated
by OSA is called OSA-related hypertension after excluding
other definite secondary etiologies (e.g., renal artery
stenosis, renal parenchymal disease, primary aldosteronism,
pheochromocytoma, and Cushing’s disease) (8). In addition,
OSA-related hypertension is characterized by high rates of
masked hypertension, elevated nocturnal blood pressure,
a non-dipper pattern of nocturnal hypertension, and an

Abbreviations: OSA, obstructive sleep apnea; ML, machine learning;
AUC, area under the curve; SHAP, Shapley additive explanations; SaO2,
arterial oxygen saturation; OAI, obstructive apnea index; BMI, body
mass index; GBM, gradient boosting machine; ABPM, ambulatory blood
pressure monitoring; AHI, apnea–hypopnea index; CT90/10, percentage
of time of SaO2 < 90%/10.

increased blood pressure variability (9). Notably, patients
with OSA and hypertension seem to be associated with more
severe outcomes. Studies based on ambulatory blood pressure
monitoring (ABPM) showed that participants with a non-
dipper pattern of nocturnal hypertension and those who have
elevated blood pressure at night demonstrate a greater degree
of end-organ damage, higher risk of stroke, increased risk
of incident heart failure, and increased risk of renal disease
progression (10). Regrettably, OSA-related hypertension is
easily disregarded by patients.

As for the general population, the reference method for
blood pressure testing is primarily an in-office measurement.
However, this diagnostic method is unreliable in the OSA
population because of the specific characteristics of OSA-related
hypertension. Previous studies have shown that among OSA
patients, masked hypertension was found in 30% of patients,
and white-coat hypertension was found in approximately 33%
of patients (11–13). It means that there is a high risk that
OSA patients may be underdiagnosed or overdiagnosed with
hypertension. The application of ABPM to systematically and
correctly assess blood pressure is recommended in clinically
normotensive OSA patients (14). However, ABPM is not cost-
efficient and often burdensome, and in clinical practice, it
seems challenging to propose ABPM to all OSA patients with
normal clinic blood pressure. Thus, the necessity of a simple and
convenient clinical tool to assess OSA-related hypertension in
daily clinical practice is emphasized, which can allow the use of
ABPM selectively rather than routinely.

Machine learning (ML) has been widely developed and used
in the medical field because of its remarkable performance
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in recent years. It can extract information from complex
and non-linear data, establish models through science, reveal
hidden dependencies between factors and diseases in the big
data environment, and help clinicians better understand the
diseases (15). Especially in cardiovascular diseases, machine
learning has a wide range of applications and satisfactory
diagnostic performance. For example, Ward et al. demonstrated
that the gradient boosting machine (GBM) model has good
discrimination for atherosclerotic cardiovascular disease risk
(16). Although ML has gained extensive attention because of its
powerful predictive capabilities, it is often criticized for being
a black box model, making it hard for clinicians to understand
and trust these complex models. Hence, this has limited its
widespread use in medical decision-making (17).

Timely blood pressure screening and early accurate
identification of OSA-related hypertension are crucial in
minimizing the associated negative health effects. Regrettably,
no ML models are available to predict the risk of OSA-
related hypertension. In this study, we aimed to develop ML-
based prediction models for OSA-related hypertension based
on available clinical data from patients to identify high-risk
patients. In addition, we used Shapley additive explanations
(SHAP) (18), a method for interpreting results made by
machine learning models, to explore the relationship between
features and the risk of OSA-related hypertension. In addition,
we further provide individual interpretations of the model’s
decisions through SHAP. Moreover, we established a web-
based risk calculator based on the most predictive maximum
likelihood algorithm to promote its clinical application, which
provided clinicians with valuable tools for risk assessment in
OSA-related hypertension.

Materials and methods

Study design and subjects

This is a retrospective observational study. It retrospectively
included the OSA patients admitted to the Department of
Otorhinolaryngology—Head and Neck Surgery of the Second
Affiliated Hospital of Xi’an Jiaotong University between October
2019 and December 2021. All study subjects underwent
nighttime polysomnography or home sleep apnea testing
and blood pressure monitoring, additionally, cardiologists
assessed their blood pressure. OSA was diagnosed on the
basis of apnea–hypopnea index (AHI) ≥ 5 events per hour
through polysomnography (19). Hypertension was defined as
a previous diagnosis with current antihypertensive therapy.
Additionally, patients with elevated nocturnal blood pressure
who had no history of hypertension were further examined
and identified as newly diagnosed with hypertension by a
cardiologist with more than 10 years of working experience.

The definition of hypertension is described in detail in the
Supplementary material.

The inclusion criteria were as follows: (1) patients with
age ≥ 18 years, (2) patients with AHI ≥ 5 events per hour, and
(3) patients who have not received OSA-related treatment
in the past. The exclusion criteria were as follows: (1)
patients with incomplete baseline data; (2) patients with
disease potentially affecting blood pressure regulation, such
as multiple organ dysfunction syndrome, uremia, severe
cardiac heart failure, renal, or cardiac transplantation;
(3) patients with the most common causes of secondary
hypertension, namely, renal parenchymal disease, renovascular
diseases, coarctation of the aorta, Cushing’s syndrome, primary
hyperaldosteronism, pheochromocytoma, hyperthyroidism,
and hyperparathyroidism; (4) pregnant women; (5) patients
with history of snoring shorter than the duration of
hypertension; and (6) patients who were diagnosed with
central sleep apnea (central AHI ≥ 5 events per hour).

This study was approved by the ethics committee of
the Second Affiliated Hospital of Xi’an Jiaotong University
(approval no. 2021031). In addition, all patients who
participated in the research provided informed consent.
The inspection items and processes involved in this study are in
line with the Declaration of Helsinki.

Data elements

Twenty-seven relevant clinical indicators were collected,
and overall, the 27 candidate variables included were as follows:
(1) demographic characteristics, namely, gender, heart disease
family history of hypertension, diabetes, hypothyroidism, body
mass index (BMI), waist circumference, neck circumference,
and age/10; (2) lifestyle behaviors, namely, drinking, smoking,
high-salt diet, high-fat diet, poor sleep quality, sedentariness,
emotionally stable, mental stress, and smoking amount; and (3)
OSA-related medical history and indicators, namely, memory
decline, inattention, Epworth Sleepiness Scale (20), course of
snoring, course of choking, AHI, obstructive apnea index (OAI),
minimum arterial oxygen saturation/10 (minimum SaO2/10),
and percentage of time of SaO2 < 90%/10 (CT90/10).

Development and validation of
prediction models

By comparing the clinical characteristics of the hypertension
and non-hypertension groups, the risk factors for predicting
OSA-related hypertension were analyzed using the univariate
analysis, and they were incorporated into machine learning as
characteristic variables. Additionally, they were also used in the
multivariate logistic regression analysis to obtain independent
predictors associated with OSA-related hypertension.
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FIGURE 1

Summary of patient inclusion. AHI, apnea–hypopnea index; OSA, obstructive sleep apnea.

All patients were randomly divided into a training set for
constructing the predictive model and a test set for the model
validation at a ratio of 7:3. The following six representative
supervised ML algorithms were used for model construction
in the training dataset: adaptive boosting, GBM, multilayer
perceptron, bootstrapped aggregating, logistic regression, and
extreme gradient boost (21–24). During training, the training
cohort internal validation method used 10-fold cross-validation
to evaluate the predictive power of each ML classifier in plotting
the average area under the receiver operating characteristic
curve (AUC). With the use of the validation cohort, the receiver
operating characteristics of the six ML models were plotted,
and AUC values were calculated to evaluate the predictive
ability of the different models in cohorts. By comparing the
predictive performance of our ML models, the model with the
best predictive performance was selected as the final model.
In addition, a confusion matrix was used to evaluate the
prediction model performance. Subsequently, on the basis of
the best predictive ability model, an online risk calculator
that can make predictions using newly entered data of OSA
patients was created.

Model interpretation

Shapley additive explanations (SHAP) is a model-agnostic
explanation technique based on cooperative game theory that
helps interpret the results from a predictive model. The
interpretation is based on quantifying the SHAP value for

each feature, representing the contribution of a feature to the
predicted risk of OSA-related hypertension (25, 26). For each
sample, the model produces a prediction value, and the sum
or average of the absolute Shapley value of each feature of
all individuals is the overall feature importance. Components
with large fundamental Shapley values are very important. In
addition, the SHAP method also proves each feature value’s
positive or negative influence on the predicted results, similar
to coefficient values in logistic regression. A positive SHAP
value indicates that the corresponding feature contributes to
a higher risk of the result, whereas a negative SHAP value
indicates that the corresponding feature leads to a lower risk
of the result. To determine the main predictors of OSA-related
hypertension, we identified the importance of ranking features
from the final model through the SHAP summary plot and
provided individual interpretations of the model’s decisions.

Statistical analysis

All analyses and random division of training and validation
sets were performed with R software (version 3.6.0). Continuous
variables were represented as the median (p25, p75), whereas
categorical variables were represented as numbers (n) and
proportions (%). The Wilcoxon rank-sum test compared the
two groups’ differences for continuous variables, and categorical
variables were evaluated using the chi-squared test. Logistic
regression analysis was used to analyze the relationship
between various predictor variables (either categorical or
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continuous) and an outcome that is binary (dichotomous).
The Python programming language (version 3.8) was also
used to develop and evaluate ML models and design
network calculators. For model interpretation, the SHAP was
implemented using the Python Shap package. P < 0.05 was
considered statistically significant.

Results

Patient characteristics

After the screening process, a total of 1,493 OSA
patients were eligible for the study (Figure 1). The baseline
characteristics of these patients are summarized in Table 1. For
the demographic variables, the two groups were significantly
different in heart disease, family history of hypertension,
diabetes, BMI, waist circumference, neck circumference, and
age/10 (all P < 0.05). For the lifestyle behavior variables,
high-salt diet, poor sleep quality, and smoking amount were
significant variables (all P < 0.05). For OSA-related medical
history and indicators, memory decline, Epworth Sleepiness
Scale, course of snoring, course of choking, AHI, OAI,
minimum SaO2/10, and CT90/10 were all significantly different
between the two groups (all P < 0.05).

Univariate and multivariate logistic
regression

Variables with a P < 0.05 in the univariate analysis were
selected for multivariate logistic regression analysis to identify
the independent risk factors of OSA-related hypertension
patients (Table 2), and all regression coefficients are shown in
Supplementary Table 1. In addition, the results indicated that
family history of hypertension, BMI, age/10, minimum SaO2/10,
and CT90/10 were independent risk factors for OSA-related
hypertension (all P < 0.05).

Performance of the machine learning
algorithm

The average AUC of the six models determined by 10-
fold cross-validation is displayed in Figure 2A, with the
GBM model achieving the best performance (AUC = 0.837).
The model validation results based on the validation set are
displayed in Figure 2B, and the GBM model still exhibited
the best performance in predicting OSA-related hypertension
(AUC = 0.873). Moreover, we further evaluated the stability
and accuracy of GBM through five cross-validations, and
the results reveal that the GBM has good stability (average
AUC = 0.810 ± 0.048) (Figure 2C). The radar plot of the six

ML models is shown in Supplementary Figure 1. A comparison
of model performance on the validation set is shown in Table 3.
Generally, all models performed satisfactorily in AUC, but not
ideally in the sensitivity. Among them, the GBM exhibited the
highest sensitivity at 0.713. Because GBM yielded the best results
for AUC and sensitivity, we chose the GBM model as the final
prediction model and then evaluated it (Figure 3). Meanwhile,
on the basis of this model, we developed a prediction tool for
the web, which can be accessed to further facilitate clinical use
through an online risk calculator at https://shimunana-true-ml-
vmz425.streamlitapp.com/ (Figure 4). The receiver operating
characteristic properties of other ML models are shown in
Supplementary Figure 2.

Model interpretability

To identify the features that influenced the prediction model
the most, we illustrated the SHAP summary plot of GBM
and the top 15 features of the prediction model in decreasing
order (Figures 5A,B). The SHAP summary plot shows that
age/10, family history of hypertension, minimum SaO2/10, BMI,
and CT90/10 were the five most critical predictive features of
the GBM model and had the most significant impact on the
prediction results.

Shapley additive explanations (SHAP) values not only could
show the contribution of each feature to the final prediction
but also could effectively clarify and explain model predictions
for individual patients. We provided two living examples to
illustrate the role of the SHAP method in describing the
machine learning model: a 46-year-old female patient who was
diagnosed with OSA but with normal blood pressure and a
54-year-old male patient who was diagnosed with OSA-related
hypertension (Figures 5C,D). The constructed model predicted
the probability of OSA-related hypertension to be 23% and
57%, respectively. The model predicted the outcome as non-
OSA-related hypertension for the female patient, which was
consistent with the actual outcome (true negative). In addition,
the model prediction result was OSA-related hypertension for
the male patient, which was consistent with the actual situation
(true positive).

Discussion

The present study is the first study to assess the predictive
performance of several machine learning algorithms for OSA-
related hypertension, obtain a GBM model that can be used
to predict OSA-related hypertension clinically, and explain
the model. GBM is a commonly used ML algorithm with
satisfactory performance in managing large and complex non-
linear datasets and avoiding overfitting (27). Subsequently, we
designed a network risk calculator based on the GBM model to
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TABLE 1 Demographic and clinical characteristics.

Characteristic Total (n = 1,493) Non-hypertension (n = 1,134) Hypertension (n = 359) P value

Gender, n (%) 0.143

Female 224 (15.0) 161 (14.2) 63 (17.5)

Male 1,269 (85.0) 973 (85.8) 296 (82.5)

Heart disease, n (%) <0.001

No 1,394 (93.4) 1,085 (95.7) 309 (86.1)

Yes 99 (6.6) 49 (4.3) 50 (13.9)

Family history of hypertension, n (%) <0.001

No 1,063 (71.2) 905 (79.8) 158 (44.0)

Yes 430 (28.8) 229 (20.2) 201 (56.0)

Diabetes, n (%) <0.001

No 1,437 (96.2) 1,113 (98.1) 324 (90.3)

Yes 56 (3.8) 21 (1.9) 35 (9.7)

Hypothyroidism, n (%) 0.278

No 1,464 (98.1) 1,109 (97.8) 355 (98.9)

Yes 29 (1.9) 25 (2.2) 4 (1.1)

Body mass index, median (Q1, Q3) 26.7 (24.6, 29.4) 26.2 (24.4, 28.7) 28.1 (25.9, 30.5) <0.001

Waist circumference, median (Q1, Q3) 98.0 (92.0, 105.0) 97.0 (92.0, 103.0) 102.0 (95.0, 108.0) <0.001

Neck circumference, median (Q1, Q3) 40.0 (37.5, 42.0) 39.0 (37.0, 41.0) 41.0 (38.0, 43.0) <0.001

Age/10, median (Q1, Q3) 4.0 (3.3, 4.9) 3.7 (3.2, 4.6) 4.8 (4.0, 5.6) <0.001

Drinking, n (%) 0.965

No 901 (60.3) 684 (60.3) 217 (60.4)

Yes 592 (39.7) 450 (39.7) 142 (39.6)

Smoking, n (%) 0.112

No 834 (55.9) 647 (57.1) 187 (52.1)

Yes 659 (44.1) 487 (42.9) 172 (47.9)

High-salt diet, n (%) <0.05

No 1,124 (75.3) 869 (76.6) 255 (71.0)

Yes 369 (24.7) 265 (23.4) 104 (29.0)

High-fat diet, n (%) 0.069

No 1,049 (70.3) 811 (71.5) 238 (66.3)

Yes 444 (29.7) 323 (28.5) 121 (33.7)

Poor sleep quality, n (%) <0.05

No 808 (54.1) 634 (55.9) 174 (48.5)

Yes 685 (45.9) 500 (44.1) 185 (51.5)

Sedentariness, n (%) 0.182

No 573 (38.4) 424 (37.4) 149 (41.5)

Yes 920 (61.6) 710 (62.6) 210 (58.5)

Emotionally stable, n (%) 0.157

No 416 (27.9%) 305 (26.9) 111 (30.9)

Yes 1,077 (72.1%) 829 (73.1) 248 (69.1)

Mental stress, n (%) 0.099

No 1,092 (73.1) 842 (74.3) 250 (69.6)

Yes 401 (26.9) 292 (25.7) 109 (30.4)

Smoking amount, median (Q1, Q3) 0.0 (0.0, 1.0) 0.0 (0.0, 1.0) 0.0 (0.0, 1.0) <0.05

Memory decline, n (%) <0.01

No 549 (36.8) 439 (38.7) 110 (30.6)

Yes 944 (63.2) 695 (61.3) 249 (69.4)

Inattention, n (%) 0.744

No 687 (46.0) 525 (46.3) 162 (45.1)

Yes 806 (54.0) 609 (53.7) 197 (54.9)

Epworth sleepiness scale, median (Q1, Q3) 9 (6, 14) 8.5 (5, 13) 11 (7, 16) <0.001

Course of snoring, median (Q1, Q3) 9.0 (4.0, 12.0) 8.0 (3.6, 10.0) 10.0 (6.0, 20.0) <0.001

Course of choking, median (Q1, Q3) 3.0 (1.0, 6.0) 2.0 (1.0, 5.0) 4.0 (1.0, 8.0) <0.001

AHI, median (Q1, Q3) 46.2 (23.0, 67.9) 41.8 (19.8, 66.1) 57.7 (33.1, 70.8) <0.001

OAI, median (Q1, Q3) 21.1 (5.2, 46.6) 17.5 (4.2, 43.5) 32.5 (14.7, 53.1) <0.001

Minimum SaO2/10, median (Q1, Q3) 7.6 (6.5, 8.4) 7.9 (6.8, 8.5) 6.9 (5.7, 7.8) <0.001

CT90/10, median (Q1, Q3) 0.7 (0.1, 3.0) 0.5 (0.1, 2.6) 1.5 (0.3, 4.0) <0.001

AHI, apnea–hypopnea index; OAI, obstructive apnea index; SaO2 , arterial oxygen saturation; CT90/10, percentage of time of SaO2 < 90%/10.
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TABLE 2 Univariate analysis and multivariate logistic regression analysis of variables.

Univariate analysis Multivariate analysis

Characteristics Category OR (95% CI) P value OR (95% CI) P value

Gender Female Ref Ref Ref Ref

Male 0.777 (0.565–1.070) 0.122 – –

Heart disease No Ref Ref Ref Ref

Yes 3.583 (2.369–5.419) < 0.001 1.437 (0.845–2.446) 0.181

Family history of hypertension No Ref Ref Ref Ref

Yes 5.027 (3.9–6.48) < 0.001 5.388 (3.975–7.302) < 0.001

Diabetes No Ref Ref Ref Ref

Yes 5.725 (3.287–9.973) < 0.001 1.849 (0.934–3.662) 0.078

Hypothyroidism No Ref Ref Ref Ref

Yes 0.500 (0.173–1.446) 0.201 – –

Body mass index – 1.148 (1.109–1.188) < 0.001 1.121 (1.038–1.210) < 0.01

Waist circumference – 1.051 (1.039–1.064) < 0.001 1.014 (0.984–1.045) 0.368

Neck circumference – 1.099 (1.061–1.138) < 0.001 1.017 (0.953–1.085) 0.607

Age/10 – 1.901 (1.707–2.118) < 0.001 2.136 (1.834–2.487) < 0.001

Drinking No Ref Ref Ref Ref

Yes 0.995 (0.780–1.268) 0.965 – –

Smoking No Ref Ref Ref Ref

Yes 1.222 (0.963–1.551) 0.099 – –

High-salt diet No Ref Ref Ref Ref

Yes 1.337 (1.025–1.746) < 0.05 1.083 (0.776–1.511) 0.639

High-fat diet No Ref Ref Ref Ref

Yes 1.277 (0.99–1.646) 0.060 – –

Poor sleep quality No Ref Ref Ref Ref

Yes 1.348 (1.063–1.710) < 0.05 1.058 (0.784–1.428) 0.711

Sedentariness No Ref Ref Ref Ref

Yes 0.842 (0.661–1.072) 0.163 – –

Emotionally stable No 1.217 (0.939–1.577) 0.139 – –

Yes Ref Ref Ref Ref

Mental stress No Ref Ref Ref Ref

Yes 1.257 (0.968–1.633) 0.086 – –

Smoking amount – 1.383 (1.109–1.723) < 0.01 1.152 (0.869–1.527) 0.325

Memory decline No Ref Ref Ref Ref

Yes 1.430 (1.109–1.844) < 0.01 1.070 (0.777–1.474) 0.679

Inattention No Ref Ref Ref Ref

Yes 1.048 (0.826–1.331) 0.698 – –

Epworth sleepiness scale – 1.070 (1.048–1.093) < 0.001 1.021 (0.993–1.049) 0.145

Course of snoring – 1.068 (1.051–1.085) < 0.001 1.009 (0.986–1.033) 0.443

Course of choking – 1.064 (1.041–1.088) < 0.001 1.004 (0.971–1.037) 0.825

AHI – 1.014 (1.009–1.018) < 0.001 0.994 (0.982–1.006) 0.341

OAI – 1.014 (1.010–1.019) < 0.001 1.007 (0.995–1.019) 0.282

Minimum SaO2/10 – 0.638 (0.584–0.697) < 0.001 0.552 (0.456–0.668) < 0.001

CT90/10 – 1.160 (1.104–1.219) < 0.001 0.842 (0.751–0.944) < 0.01

AHI, apnea–hypopnea index; OAI, obstructive apnea index; SaO2 , arterial oxygen saturation; CT90/10, percentage of time of SaO2 < 90%/10; OR, odds ratio; 95% CI, 95% credible interval.

estimate the probability of hypertension in individuals with OSA
so as to help clinicians make targeted diagnoses and treatment
plans, making precision medicine possible.

As hypothesized, our multivariate logistic regression
suggested that BMI, age/10, and minimum SaO2/10
were significant independent risk factors for OSA-related
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FIGURE 2

(A) Area under the curve (AUC) values of 10-fold cross-validation. (B) Validation of machine learning algorithms. (C) Receiver operating
characteristic curve in the gradient boosting machine (GBM) model. AdaBoost, adaptive boosting; LR, logistic regression; Bagging, bootstrapped
aggregating; MLP, multilayer perceptron; GBM, gradient boosting machine; XGBoost, extreme gradient boost; AUC, average area under the
curve; ROC, receiver operating characteristic. AUC is used as an indicator of performance, the GBM model achieved the best predictive
performance, and the Bagging model had the lowest predictive performance.

hypertension, which converges with previous research. Pan
et al. found that among police officers in southern China, the
prevalence of OSA-related hypertension was associated with
the age of the patients. However, their study population was
small and occupation-specific (28). Furthermore, Natsios and
colleagues reported that age, BMI, comorbidity, daytime SaO2,
and indices of hypoxia during sleep were estimated to be the
most precise predictors of hypertension (29). Additionally,
because of the differences in study design and study population,
we found some different results from previous studies. Family
history of hypertension and CT90/10 were also found to be risk
factors for OSA-related hypertension in our study. Interestingly,
to further confirm how input factors contribute to the model,
we calculated SHAP feature importance and feature effects.
The importance of variables also showed that the BMI, age/10,
and minimum SaO2/10, family history of hypertension, and
CT90/10 were the most important input parameters that
contribute to the predicted risk of OSA-related hypertension.
This strongly demonstrates that these five variables were
significant contributors to OSA-related hypertension, and
proved the accuracy and reliability of the GBM model. Surely,
a prospective study and animal experiments are essential to
confirm the accuracy and reliability of our proposed model.

Interestingly, in addition to identifying several known risk
factors, multivariate logistic regression and SHAP analysis also
found that CT90/10, a variable that had been overlooked
in previous cardiovascular studies, also plays an important
role in OSA-related hypertension. Previous studies have
shown a significant association between CT90 and Coronary
Artery Calcium, cerebral small vessel disease and diabetic
nephropathy (30–32), but the relationship between CT90
and hypertension has not been explored. The underlying
causes by OSA and hypertension have not been fully
elucidated. A few pathophysiological mechanisms have been
suggested to participate in it, such as elevated sympathetic

nervous system activity, renin-angiotensin aldosterone system
activity, endothelial dysfunction, inflammation, and metabolic
dysregulation (33). And López-Cano et al. showed a positive
and significant association between the nocturnal concentration
of urine metanephrines and the CT90 (34), suggesting that
CT90 may influence sympathetic activity. And this also explains
the important role of CT90 in OSA-related hypertension,
and needs more attention in the future. Surprisingly, in our
statistical model, AHI, as a diagnostic indicator of adult
OSA, participates weakly. Whether there is a dose–response
relationship between the severity of OSA and the cumulative
incidence of hypertension has been debated. The Wisconsin
Sleep Cohort Study discovered a dose–response association
between OSA and the presence of hypertension 4 years later
(35). At the same time, the Sleep Heart Health Study and
the Victoria Sleep Cohort Study found that the relationship
between hypertension and OSA was no longer significant after
age and BMI were controlled for O’Connor et al. (36) and Cano-
Pumarega et al. (37). Additionally, AHI is a simple measure
of the average number of respiratory events (apneas and
hypopneas) per hour of sleep, and it does not reflect adequately
the various phenotypes and comorbidities of OSA. Our results

TABLE 3 Performance comparison of six machine learning (ML)
models.

Model F1 score AUC Accuracy Sensitivity Specificity

AdaBoost 0.757 0.860 0.832 0.553 0.925

LR 0.716 0.853 0.810 0.468 0.925

Bagging 0.481 0.698 0.759 0.353 0.916

MLP 0.719 0.861 0.807 0.489 0.914

GBM 0.841 0.873 0.885 0.713 0.943

XGBoost 0.719 0.807 0.807 0.489 0.914

AUC, area under the curve; AdaBoost, adaptive boosting; LR, logistic regression;
Bagging, bootstrapped aggregating; MLP, multilayer perceptron; GBM, gradient boosting
machine; XGBoost, extreme gradient boost; ML, machine learning.
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FIGURE 3

Confusion matrix of GBM. GBM, gradient boosting machine.

FIGURE 4

Web calculator for predicting OSA-related hypertension. OSA, obstructive sleep apnea.

disclosed that blood oxygen indicators (e.g., minimum SaO2/10
and CT90/10) might be better predictors of OSA-related
hypertension than AHI.

Notably, the risk for OSA-related hypertension is increased
most by family history of hypertension in the multivariate
logistic regression, followed by age/10. However, the SHAP

analysis showed that minimum SaO2/10 has the highest
predictive value for OSA-related hypertension. The discrepancy
between multivariate logistic regression and SHAP values can
be explained by the prevalence of a variable. Odds ratios were
calculated only for patients associated with this variable, but the
mean SHAP value for all patients was calculated. In addition, the
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FIGURE 5

Shapley additive explanations (SHAP). (A,B) The standard and classified bar charts of the SHAP summary plots showed the influence of each
parameter on the gradient boosting machine (GBM) model. (C,D) SHAP model explanation of two typical predictions. The features are ranked
according to the sum of the SHAP values for all patients, and the SHAP values are used to show the distribution of the effect of each feature on
the GBM model outputs. Each dot represents a case in the dataset. The color of a dot indicates the value of the feature, with blue indicating the
lowest range and red the highest range. The horizontal axis shows the corresponding SHAP value of the feature. A positive SHAP value
contributes to the prediction of rupture and vice versa. SHAP, Shapley additive explanations; GBM, gradient boosting machine; SaO2, arterial
oxygen saturation; BMI, body mass index; AHI, apnea–hypopnea index; CT90/10, percentage of time of SaO2 < 90%/10.

average SHAP value was further used to evaluate the importance
of features and rank them. Hence, variables with low impact and
high prevalence will have low odds ratios but high SHAP values.

In our study, full integration of the standard clinical
variables with Polysomnography parameters was performed
during the construction of the ML model. The model can
thus predict OSA-related hypertension risk stratification for
the patient, using all relevant covariates rather than individual
measures. Our approach was also validated with repeated
10-fold cross-validation to provide a robust estimation of
prediction accuracy with minimal bias. The six models
performed well, with AUC ranging from 0.698 to 0.873 and
sensitivity from 0.353 to 0.713 in the test dataset. And the
GBM prediction model with the highest AUC, accuracy, and

sensitivity was identified as the final model for this study
and clinical use. The GBM model with 0.873 AUC and
0.713 sensitivity proves good discrimination and stability.
What’s more, we introduce the Shapley value to explain the
GBM model. SHAP is a model-independent interpretation
technique that interprets black box models globally and
locally, and can provide a rational explanation for the
prediction, which can significantly enhance the confidence of
clinicians in the model.

However, despite our best efforts to improve it, this
study still has some limitations. First, this is a single-center
retrospective study, and the performance of machine learning
algorithms may vary for datasets with different distributions
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of patient characteristics and various institutions. Therefore,
more patients from multiple sources are required to validate
our model’s robustness and repeatability in the future. Second,
the undesirable sensitivity may be that the ML algorithm learns
from input features, and some discreet relationships may have
been lost because of unknown or disregarded features not
registered by doctors. In the future, we will conduct prospective
validation based on this model, continue to explore crucial risk
factors for OSA-related hypertension, and modify the model
further to improve the accuracy and reliability of the GBM
prediction model.

Conclusion

We established a risk prediction model for OSA-related
hypertension patients using the ML method and demonstrated
that the GBM model performs best among the six ML models.
This prediction model could help to identify high-risk OSA-
related hypertension patients, provide early and individualized
diagnoses and treatment plans, protect patients from the serious
consequences of OSA-related hypertension, and reduce the
burden on society.
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