683 research outputs found

    NMR evidence for very slow carrier density fluctuations in the organic metal (TMTSF)2_2ClO4_4

    Full text link
    We have investigated the origin of the large increase in spin-echo decay rates for the 77^{77}Se nuclear spins at temperatures near to T=30KT=30K in the organic superconductor (TMTSF)2_2ClO4_4. The measured angular dependence of T21T_2^{-1} demonstrates that the source of the spin-echo decays lies with carrier density fluctuations rather than fluctuations in TMTSF molecular orientation. The very long time scales are directly associated with the dynamics of the anion ordering occurring at T=25KT=25K, and the inhomogeneously broadened spectra at lower temperatures result from finite domain sizes. Our results are similar to observations of line-broadening effects associated with charge-ordering transitions in quasi-two dimensional organic conductors.Comment: 5 pages, 4 figure

    Extreme ion heating in the dayside ionosphere in response to the arrival of a coronal mass ejection on 12 March 2012

    Get PDF
    Simultaneous measurements of the polar ionosphere with the European Incoherent Scatter (EISCAT) ultra high frequency (UHF) radar at Tromsø and the EISCAT Svalbard radar (ESR) at Longyearbyen were made during 07:00–12:00 UT on 12 March 2012. During the period, the Advanced Composition Explorer (ACE) spacecraft observed changes in the solar wind which were due to the arrival of coronal mass ejection (CME) effects associated with the 10 March M8.4 X-ray event. The solar wind showed two-step variations which caused strong ionospheric heating. First, the arrival of shock structures in the solar wind with enhancements of density and velocity, and a negative interplanetary magnetic field (IMF)-<i>B<sub>z</sub></i> component caused strong ionospheric heating around Longyearbyen; the ion temperature at about 300 km increased from about 1100 to 3400 K over Longyearbyen while that over Tromsø increased from about 1050 to 1200 K. After the passage of the shock structures, the IMF-<i>B<sub>z</sub></i> component showed positive values and the solar wind speed and density also decreased. The second strong ionospheric heating occurred after the IMF-<i>B<sub>z</sub></i> component showed negative values again; the negative values lasted for more than 1.5 h. This solar wind variation caused stronger heating of the ionosphere in the lower latitudes than higher latitudes, suggesting expansion of the auroral oval/heating region to the lower latitude region. This study shows an example of the CME-induced dayside ionospheric heating: a short-duration and very large rise in the ion temperature which was closely related to the polar cap size and polar cap potential variations as a result of interaction between the solar wind and the magnetosphere

    The Fulde-Ferrell-Larkin-Ovchinnikov State in the Organic Superconductor k-(BEDT-TTF)2Cu(NCS)2 as Observed in Magnetic Torque Experiments

    Full text link
    We present magnetic-torque experiments on the organic superconductor k-(BEDT-TTF)2Cu(NCS)2 for magnetic fields applied parallel to the 2D superconducting layers. The experiments show a crossover from a second-order to a first-order transition when the upper critical field reaches 21 T. Beyond this field, which we interpret as the Pauli limit for superconductivity, the upper critical field line shows a pro-nounced upturn and a phase transition line separates the superconducting state into a low- and a high-field phase. We interpret the data in the framework of a Fulde-Ferrell-Larkin-Ovchinnikov state.Comment: 2 pages, 1 figur

    Mechanism for the Singlet to Triplet Superconductivity Crossover in Quasi-One-Dimensional Organic Conductors

    Full text link
    Superconductivity of quasi-one-dimensional organic conductors with a quarter-filled band is investigated using the two-loop renormalization group approach to the extended Hubbard model for which both the single electron hopping t_{\perp} and the repulsive interaction V_{\perp} perpendicular to the chains are included. For a four-patches Fermi surface with deviations to perfect nesting, we calculate the response functions for the dominant fluctuations and possible superconducting states. By increasing V_{\perp}, it is shown that a d-wave (singlet) to f-wave (triplet) superconducting state crossover occurs, and is followed by a vanishing spin gap. Furthermore, we study the influence of a magnetic field through the Zeeman coupling, from which a triplet superconducting state is found to emerge.Comment: 11 pages, 15 figures, published versio

    Pre-M Phase-promoting Factor Associates with Annulate Lamellae in Xenopus Oocytes and Egg Extracts

    Get PDF
    We have used complementary biochemical and in vivo approaches to study the compartmentalization of M phase-promoting factor (MPF) in prophase Xenopus eggs and oocytes. We first examined the distribution of MPF (Cdc2/CyclinB2) and membranous organelles in high-speed extracts of Xenopus eggs made during mitotic prophase. These extracts were found to lack mitochondria, Golgi membranes, and most endoplasmic reticulum (ER) but to contain the bulk of the pre-MPF pool. This pre-MPF could be pelleted by further centrifugation along with components necessary to activate it. On activation, Cdc2/CyclinB2 moved into the soluble fraction. Electron microscopy and Western blot analysis showed that the pre-MPF pellet contained a specific ER subdomain comprising "annulate lamellae" (AL): stacked ER membranes highly enriched in nuclear pores. Colocalization of pre-MPF with AL was demonstrated by anti-CyclinB2 immunofluorescence in prophase oocytes, in which AL are positioned close to the vegetal surface. Green fluorescent protein-CyclinB2 expressed in oocytes also localized at AL. These data suggest that inactive MPF associates with nuclear envelope components just before activation. This association may explain why nuclei and centrosomes stimulate MPF activation and provide a mechanism for targeting of MPF to some of its key substrates

    Antiferromagnetic Phases in the Fulde-Ferrell-Larkin-Ovchinnikov State of CeCoIn_5

    Full text link
    The antiferromagnetic (AFM) order in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state is analyzed on the basis of a Ginzburg-Landau theory. To examine the possible AFM-FFLO state in CeCoIn_5, we focus on the incommensurate AFM order characterized by the wave vector Q = Q_{0} \pm q_inc with Q_0 =(\pi,\pi,\pi) and q_inc \parallel [110] or [1-10] in the tetragonal crystal structure. We formulate the two component Ginzburg-Landau theory and investigate the two degenerate incommensurate AFM order. We show that the pinning of AFM moment due to the FFLO nodal planes leads to multiple phases in magnetic fields along [100] or [010]. The phase diagrams for various coupling constants between the two order parameters are shown for the comparison with CeCoIn_5. Experimental results of the NMR and neutron scattering measurements are discussed.Comment: 6pages, Proceedings of ICHE2010, To appear in J. Phys. Soc. Jpn. Supp

    Ginzburg-Landau Analysis for the Antiferromagnetic Order in the Fulde-Ferrell-Larkin-Ovchinnikov Superconductor

    Full text link
    Incommensurate antiferromangetic (AFM) order in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconductor is investigated on the basis of the Ginzburg-Landau theory. We formulate the two component Ginzburg-Landau model to discuss two degenerate incommensurate AFM states in the tetragonal crystal structure. Owing to the broken translation symmetry in the FFLO state, a multiple phase diagram of single-q phase and double-q phase is obtained under the magnetic field along [100] or [010] direction. Magnetic properties in each phase are investigated and compared with the neutron scattering and NMR measurements for a heavy fermion superconductor CeCoIn_5. An ultrasonic measurement is proposed for a future experimental study to identify the AFM-FFLO state. The field orientation dependence of the AFM order in CeCoIn_5 is discussed.Comment: 8 page
    corecore