30,934 research outputs found

    Dynamical evolution of the mass function and radial profile of the Galactic globular cluster system

    Full text link
    Evolution of the mass function (MF) and radial distribution (RD) of the Galactic globular cluster (GC) system is calculated using an advanced and a realistic Fokker-Planck (FP) model that considers dynamical friction, disc/bulge shocks and eccentric cluster orbits. We perform hundreds of FP calculations with different initial cluster conditions, and then search a wide-parameter space for the best-fitting initial GC MF and RD that evolves into the observed present-day Galactic GC MF and RD. By allowing both MF and RD of the initial GC system to vary, which is attempted for the first time in the present Letter, we find that our best-fitting models have a higher peak mass for a lognormal initial MF and a higher cut-off mass for a power-law initial MF than previous estimates, but our initial total masses in GCs, M_{T,i} = 1.5-1.8x10^8 Msun, are comparable to previous results. Significant findings include that our best-fitting lognormal MF shifts downward by 0.35 dex during the period of 13 Gyr, and that our power-law initial MF models well-fit the observed MF and RD only when the initial MF is truncated at >~10^5 Msun. We also find that our results are insensitive to the initial distribution of orbit eccentricity and inclination, but are rather sensitive to the initial concentration of the clusters and to how the initial tidal radius is defined. If the clusters are assumed to be formed at the apocentre while filling the tidal radius there, M_{T,i} can be as high as 6.9x10^8 Msun, which amounts to ~75 per cent of the current mass in the stellar halo.Comment: To appear in May 2008 issue of MNRAS, 386, L6

    Analysis of iced wings

    Get PDF
    A method for computing ice shapes along the leading edge of a wing and a method for predicting its aerodynamic performance degradation due to icing is described. Ice shapes are computed using an extension of the LEWICE code which was developed for airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered ice wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack

    Doping Dependent Changes in Nitrogen 2pp States in the Diluted Magnetic Semiconductor Ga1x_{1-x}Crx_{x}N

    Full text link
    We study the electronic structure of the recently discovered diluted magnetic semiconductor Ga1x_{1-x}Crx_{x}N (xx = 0.01-0.10). A systematic study of the changes in the occupiedoccupied and unoccupiedunoccupied ligand (N) partial density of states (DOS) of the host lattice is carried out using N 1ss soft x-ray emission and absorption spectroscopy, respectively. X-ray absorption measurements confirm the wurtzite N 2pp DOS and substitutional doping of Cr into Ga-sites. Coupled changes in the occupiedoccupied and unoccupiedunoccupied N 2pp character DOS of Ga1x_{1-x}Crx_{x}N identify states responsible for ferromagnetism consistent with band structure calculations.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Tempered stable and tempered infinitely divisible GARCH models

    Get PDF
    In this paper, we introduce a new GARCH model with an infinitely divisible distributed innovation, referred to as the rapidly decreasing tempered stable (RDTS) GARCH model. This model allows the description of some stylized empirical facts observed for stock and index returns, such as volatility clustering, the non-zero skewness and excess kurtosis for the residual distribution. Furthermore, we review the classical tempered stable (CTS) GARCH model, which has similar statistical properties. By considering a proper density transformation between infinitely divisible random variables, these GARCH models allow to find the risk-neutral price process, and hence they can be applied to option pricing. We propose algorithms to generate scenario based on GARCH models with CTS and RDTS innovation. To investigate the performance of these GARCH models, we report a parameters estimation for Dow Jones Industrial Average (DJIA) index and stocks included in this index, and furthermore to demonstrate their advantages, we calculate option prices based on these models. It should be noted that only historical data on the underlying asset and on the riskfree rate are taken into account to evaluate option prices. --tempered infinitely divisible distribution,tempered stable distribution,rapidly decreasing tempered stable distribution,GARCH model option pricing

    Tempered infinitely divisible distributions and processes

    Get PDF
    In this paper, we construct the new class of tempered infinitely divisible (TID) distributions. Taking into account the tempered stable distribution class, as introduced by in the seminal work of Rosinsky , a modification of the tempering function allows one to obtain suitable properties. In particular, TID distributions may have exponential moments of any order and conserve all proper properties of the Rosinski setting. Furthermore, we prove that the modified tempered stable distribution is TID and give some further parametric example. --stable distributions,tempered stable distributions,tempered infinitely divisible distributions,modified tempered stable distributions

    A perturbation theory for large deviation functionals in fluctuating hydrodynamics

    Full text link
    We study a large deviation functional of density fluctuation by analyzing stochastic non-linear diffusion equations driven by the difference between the densities fixed at the boundaries. By using a fundamental equality that yields the fluctuation theorem, we first relate the large deviation functional with a minimization problem. We then develop a perturbation method for solving the problem. In particular, by performing an expansion with respect to the average current, we derive the lowest order expression for the deviation from the local equilibrium part. This expression implies that the deviation is written as the space-time integration of the excess entropy production rate during the most probable process of generating the fluctuation that corresponds to the argument of the large deviation functional.Comment: 12page

    Time series analysis for financial market meltdowns

    Get PDF
    There appears to be a consensus that the recent instability in global financial markets may be attributable in part to the failure of financial modeling. More specifically, current risk models have failed to properly assess the risks associated with large adverse stock price behavior. In this paper, we first discuss the limitations of classical time series models for forecasting financial market meltdowns. Then we set forth a framework capable of forecasting both extreme events and highly volatile markets. Based on the empirical evidence presented in this paper, our framework offers an improvement over prevailing models for evaluating stock market risk exposure during distressed market periods. --ARMA-GARCH model,»-stable distribution,tempered stable distribution,value-at-risk (VaR),average value-at-risk (AVaR)

    Smearing Effect in Plane-Wave Matrix Model

    Full text link
    Motivated by the usual D2-D0 system, we consider a configuration composed of flat membrane and fuzzy sphere membrane in plane-wave matrix model, and investigate the interaction between them. The configuration is shown to lead to a non-trivial interaction potential, which indicates that the fuzzy sphere membrane really behaves like a graviton, giant graviton. Interestingly, the interaction is of r^{-3} type rather than r^{-5} type. We interpret it as the interaction incorporating the smearing effect due to the fact that the considered supersymmetric flat membrane should span and spin in four dimensional subspace of plane-wave geometry.Comment: 26 pages; added referenc
    corecore