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Abstract

A method for computing ice shapes along the
leading edge of a wing and a method for predicting
its aerodynamic performance degradation due to
icing 1s described. 1Ice shapes are computed using
an extension of the LEWICE code which was developed
for airfolls. The aerodynamic properties of the
iced wing are determined with an interactive scheme
in which the solutions of the inviscid flow equa-
tions are obtained from a panel method tand the
solutions of the viscous flow equations
obtained from an inverse three-dimensional finite-
difference boundary-layer method. A new interac-

are

tion law 1s used to couple the inviscid and viscous

fiow solutions.

The application of the LEWICE wing code to the
calculation of 1ice shapes on a MS-317 swept wing
show good agreement with measurements. The inter-
active boundary-layer method 1s applied to a
tapered iced wing in order to study the effect of
icing on the aerodynamic properties of the wing at
several angles of attack.

1.0 Introduction

The National Aircraft Icing Technology Plan!
called for the creation of a method to simulate ice
accretion on an alrcraft and predict the effect of
ice accretion on aircraft performance. This paper
presents results which suggest that the realization
of this goal is within reach, largely due to the
technical and organizational abilities of NASA
Lewis Research Center, which developed the LEWICE
code for the calculation of Aice-accretion on alr-
foils as a function of atmospheric conditions<:
and supported the development of methods to deter-
mine the resulting aerodynamic properties of ficed
alrfolls and w1ngs.“ At the same time, the
NASA Lewls Research tunnel has been used for the
study of the process of ice formation, and an

experimental program has been initiated to measure —

degraqat1on of the gerodynam1c performance of air-
folls and wings. It ¥s intended that the
resulting simulation method, which will solve the
conservation equations and predict ice accretion,
will be evaluated by comparing the results of these
calculations with experimental data. This method
will then be used to assist in the prediction of
the performance degradation of wings in icing con-
ditions and thereby assist in ensuring that ths
Regulations of the Federal Aviation Authority

are met.

Research on ailrcraft icing can be judged in
many ways; for example, by the presentations made
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_two-dimensional

performance,

to the Icing Workshop held at NASA Lewis Research
Center annually and by the several papers presented
each year at the AIAA Aerospace Sciences Meet\n?

The experimental investigation of Bragg et al. 0,
in which the effects of simulated accretions of
glaze ice were measured on a wing with a NACA 0012
alrfoll cross-section, follows from a series of
earlier valuable contributions.''" Numerical
investigations have already begun to consider
fixed and rotary wing performance (1.e. Kwon and
Sankar'*:'2), A major requirement, however, is

“to extend the LEWICE code to the representation of

ice shapes on the leading edge of a wing and
combine 1t with a method for the determination of
and to do so for three-dimensional
flows over complete airframes and at a modest cost
so that the 1implications of alrcraft geometry,
angle of attack, speed, and atmospheric conditions
can be predicted. It 3is self-evident that this
achievement will be of value only if the components
of the simulation method as well as the full simu-
lation method in 1{ts entirety are tested and the
results compared with experimental data.

It 1s generally accepted that the variation of
the shapes of ice with atmospheric conditions which
lead to rime ice can be determined on airfoils with
the current version of the LEWICE code and that the
shape of glaze fice, %1§qough acceptable, can and
should be 1mproved.] ’ In this work it s
assumed that the LEWICE code is the best available,
generally satisfactory, and amenable to 1improve-
ment. Thus, the problem 1s to develop a three-
dimensional version of the LEWICE code and combine
i1t with a three-dimensional method for the deter-
mination of aerodynamic properties, taking finto
account the fact that ice formations are neither
continuous nor smooth. Since one of the main com-
ponents of the present computer method to predict
ice shapes 1s a method for the solution of
inviscid-flow equations, 1t would be advantageous
if this approach could also be used for the predic-
tion of aerodynamic properties of iced wings.

It can be envisaged, at least by those with a
long-term view, that the Reynolds-averaged Navier-
Stokes equations might provide the basis for the
prediction of aerodynamic properties, and scrutin-
izing the related 1iterature on the solution of
equations for smooth airfoils
reveals that there 1is a dichotomy of view. It
would seem, however, that even these comparatively
simple flows are investigated using equations that
are further reductions of the Navier-Stokes equa-
tions, including thin-layer Navier-Stokes equations
and by the interaction of inviscid and boundary-
layer equations. The former approach, like those



with higher-order equations, holds much promise,
but the cost of computation - even in two dimen-
stons - 1s large and becomes prohibitive for use
in three dimensions, particularly with complete
aircraft geometries. For the foreseeable future
the interactive approach is to be preferred. The
inviscid-flow procedure may be 1dentical to that
already utilized within the LEWICE code so that
the ice accretion may be part of an interactive
calculation,

The interactive method used in this paper has
been widely used for two-dimensional flows, so its
prediction abilities are known for a wide range of
smooth body shapes, iced airfoils, and aerodynamic
and atmospheric conditions. In addition, it has
recently been applied to w‘lngs]B and, although
further developments are desirable to determine a
more efficient means of achieving the inviscid-
viscous interaction in three-dimensional fiows, it
is clearly able to deal with wing geometries and
potentialiy complete aircraft. In this paper, we
describe a general procedure for predicting ice
shapes on wings and determining their influence on
the aerodynamic properties of the wings. This
procedure 1ncorp0{gtes a general inviscid code
developed by Hess.

This paper describes the extension to wing
flows of the combined LEWICE/IBL procedure devel-
oped for airfoils. Section 3 describes the pro-
cedure developed for calculating ice shapes along
the leading edge of a wing. Section 4 describes
the interactive boundary-layer method for computing
three-dimensional flows on iced wings. In both
sections, use is made of Hess's three-dimensional
panel method for computing the 4inviscid flowfield
as described 1in Section 2. Section 5 presents a
comparison between calculated and measured iced
shapes obtained under infinite swept wing condi-
tions on a MS-317 swept wing. The results of Sec-
tion & show the 1influence of 390 and 1164-second
rime ice on the performance degradation of a NACA
0012 tapered wing at several angles of attack. In
this case, the interactive boundary-layer calcula-
tions were performed for a prescribed ice shape
distribution along the wing leading edge using the
procedure described in Section 4. The paper ends
with a brief discussion of the implications of the
work and a summary of the more important con-
clusions.

2.0 Three-Dimensional Pane]l Method

We use the surface-source panel method devel-
oped by Hess!9 for computing the inviscid flow
about a compiete airplane configuration. This
method represents a general body by a set of quad-
rilateral panels as shown in Fig. 1. A three-
dimensional configuration in general consists of
14fting sections, such as a wing or pylon for which
there is a well-defined trailing edge, and nonlift-
ing sections, such as the fuselage. Under the
formulation adopted by Hess, all panels are
assigned an independent source distribution, while
those on a 1ifting section are assumed to carry a
bound vorticity distribution. The wvariation of
this bound vorticity in the streamwise direction
is assumed, while its variation in the spanwise
direction is adjusted to satisfy the Kutta condi-
tion at the tratling edge. The complete solution
for a prescribed flow condition 1s obtained by
simultaneously satisfying a condition of zero nor-
mal velocity at a control point on each panel of
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Fig. 1. Wing/body configuration.
the body together with a Kutta condition at each
tradling-edge panel.

The nature of the Kutta condition varies
greatly among the many panel methods which are
currently available. While the Kutta condition
adopted by Hess assumed equal upper and lower sur-
face pressures at the trailing edge, other methods
make use of other derived conditions that do not
guarantee a pressure match at the tralling edge.
For instance, Margason et al.2 showed that
pressure mismatches of up to half of the free-
stream dynamic pressure could occur from such
alternate forms of the Kutta condition. Since we
are also interested 1n the computation of inviscid
flows with viscous effects, and since the behavior
of the boundary-layer at the trailing edge can have
a significant effect on the overall solution, it
1s believed that the approach adopted here s more
realistic and blends in well with the previous
studies on two-dimensional flows employing inter-
action procedures.

3.0 Three-Dimensional Ice Shapes and
Their Calculation

Before we describe our procedure for calcu-
lating the ice shapes along the leading edge of a
wing for given atmospheric conditions, 1t is use-
ful to review the ice accretion procedure used 1in
the LEWICE program for afrfoils. LEWICE consists
of three main modules: (1) prediction of inviscid
flow by a panel method, (2) calculation of the
trajectories of water droplets driven by the air
velocities so that the impingement pattern of the
water droplets on the surface can be determined,
and (3) a quasi-steady-state surface heat transfer
analysis in which mass and energy equations are
solved for a two-dimensional flow 1in order to
determine the ice shape. As discussed in Ref. 3,
the heat balance equation for a control volume
includes terms providing heat to or removing heat
from the control volume. The dominant *heat
removal® term 1s due to convective cooling and the
dominant heat source term 1s due to the heat
released by the freezing of water entering the
control volume. The water entering a control vol-
ume consists of: (1) water droplets impinging on
the airfoll surface, and (2) water "running back®
from an adjacent upstream control volume.



The above procedure for airfoils has been found
to be remarkably good for predicting ice shapes,
(see for example Ref. 17) despite the very
empirical nature of the expressions used in the
heat balance as well as in the physical model of
the ice accretion process. Studies conducted by
Olsen and Walkerll, show that at aircraft
speeds there 1s no flow of liquid over the surface
of the ice after a short initial flow, even at
subfreezing temperatures that are close to the
freezing point. Instead, there are very large
stationary drops on the ice surface that lose
water from their bottoms by freezing as water is
added to the droplets by the additien of
microscopic cloud droplets. This observation
disagrees with the existing physical model used in
the LEWICE code, since it assumes that there is a
thin liquid continuously flowing over the ice
surface. While this model disagrees with the
experimental evidence, especially for conditions
leading to horn-shaped clear (glaze) fice, ‘1t does

reasonably well for rime ice which forms when the

air temperature is Tow enough to cause the cloud
droplets to freeze almost immediately on impact.

The role that the 1iquid layer plays in the
formation of glaze ice has gsen further el%Porated
on by Hansman and Turnock?3 and BilaninZ4, who
point to the surface tension phenomenon as the most
1ikely source for the observed deviations. There
is convincing evidence from tests with variable
surface tension that ice growth depends on It.
Although a smooth water fiIm may form at the stag-
nation point, 1t soon breaks up by the beading

process and freezes into irregular rough lumps that
enhance heat transfer and speed up the ice growth,

The parameters controlling transition from a smooth
film to beads and to rough ice formation are not
well known at this time. For this reason, care is
required to extend the ice accretion procedure from
two- to three- dimensional flows.

In principle, the extension of the LEWICE air-
foll procedure to three-dimensional flows requires
that the trajectory calculations be performed for
the three components of the velocity obtained from
a three-dimensional panel method and a heat trans-
fer balance which also 1includes the spanwise
direction. While the former can be done with
increased computer cost, the latter s difficult
in view of the empirical nature of the heat trans-
fer coefficient, h., used to represent the con-
vective cooling. fn the present LEWICE program,
this parameter for turbulent flows is expressed by

cf/2
he = I 1ouge, (D)
Prt + /(cf/2) (1/Stk)
through the Reynolds analogy with local skin-

friction coefficient, c¢, given by an expression
valid for a flat-plate fqow with roughness,

2
cs 0.4
z = Uin (864 (e, /k) + 2.568]" (2)

(g

The parameter Sty represents a dimensionless rough-
ness parameter given by

utks -0.2
Sty = 1.16 (—7) (3)

The momentum thickness, 6y, 1s calculated by a
momentum 1integral method which employs a smooth
flat-plate skin-friction coefficient as one of the

. alent two-dimensional form.

auxiliary equations necessary to solve the integral
equation. Since Eq. (1) 3s based mainly on data
correlation with roughness parameters chosen so
that the computed ice shapes fit the experimental
data, any attempt to add a spanwise heat transfer
coeffictent to the heat balance equation will be
empirical and can only be done where experimental
data exists. As a first step, however, it is pru-

dent to leave the heat balance 11n 1its two-
dimensional form and assume it to apply to a three-
dimensional body which is expressed in an equiv-
One approach, followed
by Potapczuk and B1dwe1125, is to perform the
trajectory calculations for a three-dimensional
flowfield by determining the impingement patterns
of the water droplets resulting from the three
components of the velocity field and apply this
along the streamiines on the wing. Another
approach, followed here, is to approximate the 3D
wing by an equivalent yawed infinite wing at each
spanwise station. 1In this case, the flowfleld can
be calculated by a three-dimensional panel method
and the particle trajectories calculated in a
quasi-three-dimensional manner, so that the two-
dimensional heat balance can be applied along the

“airfoll section normal to the leading edge of the

wing. Each approach has its advantages and must
be evaluated against experimental data. Studies
reported by Potapczuk and Bidwell show that their
appreach leads to ice shapes which are in good
agreement with experimental data.

It 1s also useful to seek other approaches to
extend the two-dimensional 1ice accretion model to
three-dimensional flows since the computer cost of
predicting an ice shape at a given spanwise section
1s relatively high. For example, the approach of
Potapczuk takes about 20 minutes on a Cray, while
the present approach takes less than 7 minutes. If
the wing is approximated, say by ten airfoil sec-
tions, then the use of the computer program to pre-
dict the 1ce shapes along the leading edge of a
wing can require between one and three hours. It
is also possible that the dominant effect 11es with
the heat transfer balance and that "more accurate”
trajectory calculations may not have an appreciable
effect on the ice shapes. The answers to all these
questions, however, can be provided by comparing
the calculated ice shapes with experimental data.

3.1 Present A
on Wings

To describe our approach, which is based on the
extension of the LEWICE airfoil code to wings, we
use the three-dimensional panel method described
in Section 2. For a wing defined by streamwise
cross-sections, we calculate the velacity compon-

roach f Calculating Ice Shape

“ents vg. vg. V3 in a Cartestan coordinate system x,
a Spe

y, za cified incidence angle o measured from
the x-axis. I1f we denote the unit vectors in this
coordinate system by (8;, &, &3), then the veloc-
ity vector can be written as

+ V-e, + Vie3 (4)

1 y 2
We now approximate the wing by an equivalent yawed
infinite wing at each spanwise station. For this
purpose, we define a new Cartesian coordinate sys-
tem (x,y,z) constructed so that x is normal to the
leading edge of the wing and y 1is normal to the
airfoll chord c,. If we let at represent the local
incidence angle of the chord ¢ with respect to the
x-axis, as shown in Fig. 2, with a and b denoting

v=vie
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Fig. 2. Definitions for a streamwise cut of a
wing. t

the leading edge of the chord 1ine, then it can be
shown that for an airfoll section defined normal
to the leading_edge (x/cp, y/cp) the relationship

between the (x,y) and (x,y) coordinates can be
expressed by
i La, Eﬂ [(x/cn) cosa, + (y/cn!sinan] (58)
c ¢ ¢ COSA
-
¥, X gpa v L ocosa ] (5b)
¢ ¢ ¢, LI n
Here o corresponds to the local incidence angle

of the Enord cp With respect to the x,-axis, which

represents the coordinate normal to the leading
edge defined in the (x,z) plane. ap 15 related to
«t and X by
tanct
tanon = oS (6a)

The relation between the airfoll chord length nor-
mal to the leading edge of the wing and the stream-
wise airfoll chord length 1is

COSGtCOSX

¢h ® cosa, ¢ (6b)

The trajectory calculations require that the veloc-
jty components in three directions are given and,
since the panel method computes the velocities for
the (x,y,z) coordinate system, it is necessary to
determine them in the (x,y,z) coordinate system so
that ice accretion can be computed on an equivalent
two-dimensional model. If we denote the unit vec-
tors of the coordinate system {x,y,z) by (?,J. ),
then the relationship between the unit vectors 1in
the two coordinate systems are

i = e, c05ancosx -8 s1nan - e cos«ns1nk (1a)

) - e s1nancosx ve, COScn - €, sinansink (1b)

(7¢)

>

= & siny + ey cosh

Each velocity component, Vy, Vy, Vz, in the (x,Y,2)
coordinate system can be obt!1 eé by taking a dot
product of the velocity vector V with its respec-
tive unit vector, that is,

-
1
<l
.
-
1

Vi cos«ncosk - v9 sinon - Vi c05ans1nk

X
(8a)
Vy =V ] = Vi stnancosk + Vy Cosap - Vi s1nans1nx
(8b)
Vz aV ek = Vi sink + Vi COS\ (8Bc)
Similarly, for a freestream velocity given by
v_ - v (e, cosa + e, sina] (9)

the components of the freestream velocity 1in the
(x,y,z) directions are:

(Vx)u =V, + 1=V [cosa cosa COSK - sinans1na]

(10a)
Vy)g = v . j- V_[cosa sina cosk + cosa sina]

(10b)
(V) _ =V_» k - V_[cosa sim] (10¢)

e ®

Since our model is for a yawed infinite wing, then
V, given by Eq. (8c) and (V;)w by Eq. (10c) must be
equal. This leads to the relation

vi =V, tann cosa - Vi tank (11)

which allows the expressions given by Eg. (8) to
be expressed in the following forms

-~ Cosa, Ve stne - v €0Sa, COSa s1n2k
X X COSA y n ® cOoSh (12a)
sina sinan cosa sin’a
Vy = Vi osx *t Vi cosa, - v, Cosn (12)
v, - V_ cosa sink (12¢)
with total velocity VT given by,
V%a(V$+V§+V§)=V§+V§
+ (Vv cosa - V) tan'x  (13)
The trajectory calculations for an airfoil

section in a plane normal to the leading edge of
the wing are similar to those for a two-dimensional
flow. Instead of solving two equations of motion
in the x and y directions, we now need to consider

three equations in the x,y and z directions ‘éven
though the particie paths are calculated only in a
plane normal to the leading edge of the wing
according to the model discussed previously. To
elaborate on this point further, we use the tra-
jectory analysis discussed in Ref. 3 and apply
appropriate modifications to incorporate our equiv-
alent infinite swept wing approach into the two-
dimensional analysis.3

Let us consider a water particle in a flowfield
where the freestream velocity makes an angle B
with the x-axis, as shown in Fig 3. The (x,y)
coordinate system represents the airfoll coordinate
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Fig. 3. Water particle velocities.

system with v denoting the local total velocity to
which the particle is subjected and 1s computed by
the_panel method. The particle velocity is denoted
by p and the relative air velocity that the parti-
cle experiences by

vr = Vn - Vp (14)
where
Vn SRR (15a)
- -~ dx_ . dy_ .
__bB p
Vp S A SRR o (15b)

From Eqs. (14) and (15b), the relative air veloc-
ity with respect to the moving particle can be
expressed as,

Vr = (v, - vpx)1 + (vy - pr)J (16)

so that the unit vector, ér' in the Vr direction
can be computed by

. vr V.-V._.. V. -V

o A LBy Y

We now apply Newton's law of motion to the particle
in the ep-direction. Neglecting the 1ift force,
the forces acting on the particle correspond_ to the
drag force, F,,, and gravitational force, Fq, so
that with rp = x1 + y} and with m denoting the par-
ticle mass,

a2t
b _¢ 4
m = + (18)
dtz a g
where
P it
a® eerp 7 AP (1%9a)
Fo- mg(1 sing - § cosB) (19b)
Here Cq 1is the drag coefficient, , the density
of alr, Ap the cross-sectional area perpendicular

to the flow, and g the acceleration of gravity.

Resolving Eq. (18) 1into 1its components and
using the solutions in Eq. (19), we can write

o%x,  Cyehp
dt2 * S vr(vx - vpx) + g sing (20a)
d2yP C4Php
dt2 = Sm vr(vy - pr) - g cosp (20b)
2
d°z C.pA
P d7p
5= or VIV, sz1 (20c)
dt
where
dz
P
vpz = 3t (21)

If we now include the components of the particle
and inviscid air velocities in the k-direction 1in
the definition of the relative air velocity V, with
respect to the moving particle, we can write the
resulting relative air velocity as

?r =V -V e V-V e (Y, - VK (22)

If we now invoke the yawed infinite swept wing
assumption which requires that the spanwise invis-

cid velocity component V, 1{s constant, then we
can write .
Vz = Vp sink cosa (23)
With this assumption, we note that with A =
CdpAp/Zm. Eq. (20c) s of the form
dav
V‘“’E%" = AV dt = d6 (24)
z " pz
since
dv dzz
pz __ P
dt dtz

Assuming that the right-hand side of Eq. (24) 1s a
function of t only, we can integrate Eq. (24) and
write the resulting expression in the form

¥ o-G(t)
sz = Vz - (Vz - sz)e (25)

where \I‘I denotes the particle release velocity.
Equat\onDQZS) shows that 1f the particle is re-
leased with a speed equal to the total finviscid
velocity, then the spanwise velocity component of
the particle is equal to the inviscid spanwise vel-
ocity which 1s constant. As a result, the relative
air velocity for a yawed infinite swept wing, Eq.
(22), is the same as that for a two-dimensional
flow, Eq. (20). This means that the expressions
used in trajectory calculations for two-dimensional
flows can also be used for Finite swept wings when
the flowfield s computed by a three-dimensional
panel method and the spanwise velocity component 1s
assumed to be fixed by a yawed wing approximation.

4.0 Three-Dimensional Interactive Boundary-lLayer
Method

As in two-dimensional flows, the interactive
method for three-dimensional flows is based on the
solutions of the inviscid and  boundary-layer



equations. An finterface program, 11lustrated by
Fig. 4, 1is placed between the inviscid and three-
dimensional inverse boundary-layer methods to pro-
cess the geometry and inviscid velocity data for
input to the boundary-layer program. The basic
input to this program is (1) the definition of the
wing configuration that is used by a geometry sub-
routine to construct a nonorthogonal coordinate
system and (2) the associated geometrical param-
eters, which consist of the geodesic curvatures and
metric coefficients needed in the boundary-layer
calculations. Some of the generated data 1is used
later in a velocity subroutine to determine the
inviscid velocity components at the boundary-layer
grid points and to transform the inviscid velocity
components on the surface, calculated in a
Cartesian coordinate system, finto the boundary-
layer coordinate system. This operation consists
of calculating dot products of velocity vectors as
well as chordwise and spanwise interpolation.
Further velocity and geometry data proces%ing is
carried out in a subroutine that separates the
generated information into upper and lower surfaces
of the wing for boundary-layer calculations.

INVISCID INTERFACE 3-D INVERSE
METHOD ; PROGRAM B.L. METHOD
9
. BLOWING .
b VELOCITY N
Fig. 4. The interactive boundary-layer method.

The above procedure is appropriate to wings
without ice and has been used to compute transonic
flows on wing/body configurations where, since
the wing leading edge was free of fice, there was
no difficulty in generating solutions near the
attachment line by constructing the nonorthogonal
coordinate system and computing the geometrical
properties of the wing. For a wing with ice, gen-
eration of the boundary-layer solutions near the
Jeading edge can pose problems since the geodesic
curvatures and metric coefficients must be deter-
mined for an irregular surface. In addition, the
formulation of the interactive boundary-layer
method developed for 1ced airfoils must take
account of the three-dimensional nature of the
flow. Thus, it is necessary to make changes in
the strategy for solving the three-dimensional
boundary-layer equations for an iced wing. These
are considered below.

4.1 Boundary-lLayer Equations

The three-dimensional boundary-layer equations
for a nonorthogonal coordinate system are given 1in
several references (for example, Ref. 26). With
Reynolds stresses modeled by the eddy-viscosity
concept, they can be written as, o

3 2 2 .
T (uh2 sing) + 3z (wh] sine) + ay (vh]h2 sine} = 0

(26)
u_au w_au 3y _ 2 2
h] ax + hz 37 + v ay K1u cote + Kzu coseco
+ Ko UW gogecze a cote cosecd® 3p
12°% ° ° phy  3x eh, 3z

8
+v ay (b By) (21)

U 3w W 3w w2 2
h] < ' h2 az 'Y ay sz cote + K1u cosecé
+ Ko uW = cote cosec® 3p _ cosecze ap
21 ph.| ax ph az
2
3 (WM™
t vy (b ay) (28)

Here x denotes the coordinate along the lines
formed by the intersection of the wing surface and
planes representing constant percent semispan; z 3s
the coordinate along the constant percent chord-
1ines that generate the wing surface, with chord
defined as the maximum length 1ine between leading
edge and trailing edge. The third coordinate y
denotes the directlon normal to the wing surface,
and the parameter h denotes the metric coeffic-
fents, with o the angle between the coordinate
1ines x = const and z = const. For an orthogonal
system, © = «/2. The parameters Ky and Ky are
known as the geodesic curvatures of the curves z =
const and x = const, respectively. Equations (26)
to (28) are subject to the following boundary con-
ditions

u=0, v =0,

y =0, (29a)

y = §, U = Ua(x,2), W= wel(Xx,2) (29b)

The solution of the above equations also
requires 1initial conditions on two fintersecting
planes; those in the (y,z) plane at a specified
chordwise location are determined from the solu-
tions of the equations discussed in Subsection 4.3.
Those on the (x,y) plane, at a specified spanwise
location z = 745, with 1, corresponding to, say, the
root location, are determined from the solutions
of the quasi-three-dimensional form of Eqs. (26)
to (28) with all dertvatives with respect to z

neglected, that is,

3 a_ =
ax (uh251ne) + 2y (vh1h2 sine) = 0 (30)
u au, 2 2
h1 ax v ay K]u cote + sz coseco + K]uw
_ cosecze p, (b gg) (N
phy  ax vy 3y )
U, w2 2
h] ax +v 2y Kzu cote + Kl" coseco + Kzluw
_ gote cosece 3p 3 aw
= ph. ax * ¥ ay (b ay) (32)

subject to the same boundary conditions given in
£q. (29).

4.2 Interaction Law

To account for possible flow separation, as in
two-dimensional flows, we use the interactlon law
of Veldman where, for airfoll flows, the edge
velocity 1s expressed as the sum of an inviscid
velocity ug(x) and perturbation velocity sug(x) due
to viscous effects, that 1is,

Ue(x) = uB(x) + Sue(x) (33)

The perturbation velocity is given by the Hilbert
integral



X
L1l,;bd _do
6ue(x) T ow Ix do (ueéi) X - o (34)
a

in the interaction region (x5, xp)-.

To extend this 1inverse formulation to three-
dimensional flows, 1t is necessary that the two-
dimensional interaction formula given by Eq. (34)
be either modified to account for the interaction
in the x- and z-directions or be replaced by
another formulation which provides a relattonship
between displacement surface and external velocity.
Here we use the former approach, as described in
Ref. 18, and first generate an initial displacement
surface by solving the quasi-three-dimensional
boundary-layer equations subject to the boundary
conditions given by Eqs. (29) and (33) with the
external velocity distribution u@(x) obtained from
the panel method. The second step involves inter-
action between the inviscid flow equations.and the
quasi-three-dimensional flow equations. As in two-
dimensional flows, the soluttons of the boundary-

layer equations are used to compute distributions

of blowing velocity on the surface, and these allow
the inviscid flow solutions to be updated. In step
three, after the calculation of the initial condi-

tions in the (y,z) and (x,y) planes, the fully
three-dimensional boundary-layer equations are
solved with the external velocity components

resulting from step two. As before, the spanwise
velocity component 1s assumed to correspond to its
tnviscid value. The viscous flow solutions are
obtained by marching in the spanwise direction at
each advancing chordwise location. This represents
the first phase in an interactive loop that in-
volves the fully three-dimensional boundary-layer
equations. In the subsequent phases, as before,
the blowing velocity distribution is used to obtain
improved Jnviscid flow solutions, so the fully
three-dimensional boundary-layer equations are
solved for iced wings as for clean wings in tran-
sonic flow.

The viscous effects in the spanwise component
we are assumed to be second order, although their
neglect is contrary to the irrotationality condi-
tion. However, trial calculations involving vari-
ations of both velocity conditions showed that
errors were smaller than those associated with the
convergence of the solutions.

4.3 TJransformed Equations

As in two-dimensional flows, we express the
boundary-layer equations in transformed variables
for computational purposes. At first, when the
equations are solved for a prescribed external
velocity distribution (standard problem), we use
the Falkner-Skan transformation and a modified
version of this transformation for the inverse

mode. In the former case, the independent vari-
ables are defined by . )

Up 1/2 X
X = X, Z=s=Z, n= (—;) Yy, s = | h}dx

v 0 (35)

For the dependent variables u, v and w, we intro-
duce a two-component vector potential such that

2 . 2t
3y’ wh]sine v

uhzsﬁne P 3

vhih,stne = - (3¢, 22 (36)

1 3z

In addition, dimensionless parameters f and g are
defined by

(ueus)1/2h251nef(x.z,n)

w:
(31
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The coefficients m to my, are defined by
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In terms of transformed variables, boundary condi-
tions given by Eq. (29) become

n = 0: fage=fag' =0

(42)



The form of the transformed quasi-three-dimensional
equations (Egs. (30) - (32)) 1s identical to the
form of Eqs. (38) to (40), except that

f au ow
af! 3¢’ e e (43a)

az “az T ez a1

and mg and mg are now defined by:

il
o

(43b)

To solve the equations in the inverse mode, we
define independent variables by

u 172

X
X=x, z2=2, Y= (;%) y, s = 01 hydx  (44)

and relate the vector potentials ¢ and & to f and g
by t
’ (uous)”2 hzsinef(x,z,n)

“+
"

(45)
]
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and with a prime_now denoting differentiation with
respect to Y and u, and wp denoting edge velocity
components normalized by reference velocity ug,
Eqs. (26) to (2B), with e' defined by Eq. (40), are
written as
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The coefficients LY to Mg are now given by

172 2 (s]/zh sine) m sK,cote
m = h h,s1ne ax 2 » My = SKyCOL0,
my = uscote. my = -sK21. mg = -sK12.
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Mo = fyhysine az \° hysine) (48)
m7 = ;/hz, mg = —sKchce,
mg = —sK]csce, Mo = s/h1

The transformed boundary conditions for the system
of Egs. (46) and (47), with ue given by Eg. (33)

and with w, corresponding to 1ts inviscid value,
are

n=0: f=g=f=g" =0 (49a)

<l

n=amg fl=U, g =W (49b)

The quasi-three-dimensional form of the equa-
tions, which are subject to the boundary conditions

given by Eq. (49), are obtained from the above
equations by setting
al w

af' _ag! . —t . —2 .0 and

3z " az 3z " az

Me = 0 (50)

To generate the 1initial conditions near the
leading edge of the iced wing, we use quasi-three-
dimensional boundary-layer equations expressed 1in
the inverse mode given by

(bF*)* + ef* + my((F)? - (T)2) + mglf'a’ - T8,

ee
| au

+ ma[(g')z - (ie)z] = m]o(fu %{_ _ Ee 5;2)
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The above equations can be further simplified
if we assume that two adjacent defining sections
of a wing are connected by straight 1ine develop-
ment, as commonly used in the wing design. This
feature simplifies the problem of shaping the metal
for a wing surface. As a consequence, we can
neglect the geodesic curvature of x = constant
1ines, namely Kp, and thus set m3 = mg = 0. From
the definitions of my and mg, 1t can be seen that
as a result of the above assumption, these two
terms are also small and can be neglected. We
further assume that the Tocal vartations 1n cross
sections in the spanwise direction are small.
Examination of the terms my, mp and mg for a typi-
cal wing shows that m, reaches a value less than
0.1 very close to the leading edge (x/c < 0.01)
and mg reaches a maximum value of 0.2. However,
their magnitudes rapidly decrease with increasing
x and reach a very small value at x/c < 0.1. This
behavior allows us to neglect mp and mg 1in the
equations and set my = 1/2.

4.4 Solution Procedure

A detadled description of the solution proced-
ure will be reported later separately. Briefly,
the boundary-layer equations expressed in terms of
transformed variables are solved wjth Keller's two-
point finite-difference method? (box scheme)
with boundary conditions expressed in inverse form
with the interaction 1law described in Subsection
4.2. Depending on the complexity of the flowfield,
two forms of the box scheme are employed. In
regions where all velocity components are positive,
the regular box scheme {s used. In regions of
elther a negative spanwise velocity component or



negative streamwise velocity component, the zig-zag
box scheme described in Ref. 26 s used.

5.0 Comparison of Calculated and Measured
Ice Shapes on a Swept Wing

The approach described in Section 3 was applied
to the calculation of 1ce shapes that have been
observed on a MS-317 swept wing obtained under
infinite swept wing conditions. These data were
also used for a similar purpose by Potapczuk and
Bidwell<?, as discussed in Section 3.

In general, the infinite yawed wing conditions
apply to the mid-semispan section of wings with an
aspect ratio greater than about five. This approx--
imation becomes progressively less accurate as the
tip or the root of the wing 1is approached but in
most 4instances it can stil1 provide reasonable
answers. A point to remember about the use of this
approximation with finite aspect ratio ﬁings is
that although the flow may have the desired char-
acteristics, its 1ift 1s always less than the 1ift
of a wing with infinite aspect ratio. This may
lead to problems 1in comparing calculations with
experimental data unless the aspect ratio or the
pressure distribution s also given. If the pres-
sure distribution is not available, the given angle

of attack may not properly represent the experi-.--

mental conditions. Similar problems may also
arise 1in simulating wind-tunnel conditions by
calculating the corrected incidence and 11ft coef-
ficient in free air, because the trajectories in
the two cases may be far from identical. One solu-
tion to the wind-tunnel problem, which may be the
only acceptable solution for a swept wing spanning
the tunnel, 1s to calculate the flowfield about the
wing in the presence of the tunnel walls., This is
within the capability of the inviscid method dis-
cussed in Section 2, and studies are underway using
this capabiiity to investigate the effect of wind
tunnel walls on the pressure distribution.

The comparisons presented here are for the test
conditions given in Table 1. Additional studies
for other test conditions are in progress and will
be reported later. The calculated ice shapes in
Figures 5 and 6 were obtained for the untapered
wing with a MS-317 airfoll section defined stream-
wise with a sweep angle of 30° and an aspect ratio
of six. All trajectory and ice accretion calcula-
tions were carried out with inviscid flow computed
on the mld-semispan section where the spanwise
pressure gradient was negligible. A1l calculations
were performed for one time step to save computer
time, which is approximately 7 minutes per run on
the Cray computer. The increase in time, in com-
parison with the two-dimensional case, is primarily-
due to the trajectory calculations where, despite

Table 1. Test Conditions for MS-317 Ice Accretion
Experiment of Ref. 8, Vg, = 158 mph, d = 20 um,
LWC = 1.03 gm~*.
T t a
Run h (sec) (deg) (ks/c)y
1 15 1164 2.0 0.00192
6 15 1164 8.0 0.00192
7 15 390 2.0 0.00192
8 0 390 2.0 0.00127
9 0 390 8.0 0.00127
10 0 1164 8.0 0.00127
n 0 1164 2.0 0.00127

(a)
(b)
(c)
(4) oo

Fig. 5. Comparison of calculated (solid lines) and
measured (dashed lines) ice shapes. Rime ice: (a)
Run 8, (b) Run 11, (c) Run 9, (d) Run 10.

the yawed infinite wing approximations, the compu-
tation of the off-body velocities involves repeated
large matrix multiplications 1in which all wing
panels are represented.

Figure 5a shows a comparison of measured and
calculated ice shapes for Run 8 which corresponds
to Ty = 0°, o = 2°, t = 390 sec. As can be seen,
the agreement between measured and calculated
results is remarkably good. The calculated results
for a calculation time of 1164 sec and for T, = 0°F
and o = 2° (Run 11) are shown in Fig. 5b and indi-
cate reasonable agreement with measurements despite
the one time step used in the calculations. It 1s
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Fig. 6. Comparison of calculated (solid 1ines) and

measured (dashed lines) ice shapes.
Run 7, (b) Run 1, (c) Run 6.

expected that the ice growth will have some effect
on the velocity fieid and on the calculated droplet
impingement. A comparison of predicted and mea-
sured ice shapes obtained for T, = 0°F at o = 8°
for t = 390 and 1164 sec. {Runs 9 and 10) are shown
in Figs. 5c and 5d, respectively. The agreement
is again reasonable, keeping in mind that only one
time step was used in the calculations.

The next set of studies was conducted for a
s1ightly higher freestream temperature of To =
15°F, representing an icing condition for which a
mixed ice growth was observed. Run 7 in Fig. 6a
for & = 2° and t = 390 sec. indicates good agree-
ment between experiment and theory, except for some
deviation on the upper surface. The results 1in
Fig. 6b at the large time step of t = 1164 sec.
(Run 1) are more or less in agreement in predicting
the amount of ice accumulated, but they differ in
predicting 1ts shape. It is known from two-
dimensional calculations that a large number of
relatively short time steps are needed to predict
horn-shaped lce for glaze ice. Since the mixed
ice formation tends toward glaze fice shapes for
Jarge times, it is not surprising that one time
step calculation 1s not sufficient to predict the
actua) growth of the ice shapes. Similar comments
apply to Fig. 6c, where comparisons are for a large
time step of t = 1164 sec. (Run 6), but at a = 8°.

Mixed ice: (a)
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6.0 Performance Deqradation of an Iced

Japered Wing

The interactive boundary-layer method of Sec-
tion 4 was used to study the performance degrada-
tion of an iced wing having MS-317 airfoil stream-
wise sections, an aspect ratio of 3.43, and a taper
ratio of 0.4. Icing conditions were chosen to
correspond to those in Runs 8 and 11, shown in
Table 1. The pressure distribution on the wing was
computed at four locations defined by the midsec-
tion of each wing-section with a hundred panels on
each defining airfoill section. The 1ice shapes
corresponding to this pressure distribution were
computed with the method of Section 3 in the middle
of each wing section and were used to distribute
ice along the leading edge of the tapered wing.
The computed 1ice shapes for o« = 2° were thep
assumed to be the same for all angles of attack on
the wing in the 1investigation of the performance
degradation of the wing due to ice shapes corres-
ponding to the atmospheric conditions given in Runs
8 and 11. At a specified angle of attack, with the
defined 1ice shapes along the leading-edge of the
wing, calculations were performed with the method
of Section 4; that is, inviscid flow calculations
performed for an iced wing were followed by the
inverse three-dimensional boundary-layer calcula-
tions to determine the blowing velocity distribu-
tion to be used in the 1incorporation of viscous
effects into the inviscid method. The inviscid
fiow solutions made use of four 1ifting strips, and
the viscous flow calculations included boundary-
layer calculations on the wing and in the wake, the
Jatter requiring velocities at off-body points 1in
the potential fleld. This interactive and iter-
ative procedure was repeated until the solutions
converged. The 1ift coefficients were then calcu-
lated from the inviscid method for each individual
strip and included the contribution of ice protrud-
ing beyond the wing contour and the drag coeffic-
jents from the boundary-layer calculations.

figure 7 shows the variation of the calculated
11ft coefficlents as a function of angle of attack.
Since the primary purpose of the calculations was
to demonstrate the increase in drag due to ice on
a tapered wing, the angle of attack range was not
extended to stall, which would occur at relatively
high angles of attack for Tow aspect ratio wings.
The higher 14ft coefficient than for the clean wing
shown for the two iced wings is due to the normal-
jzation with the wing area of the clean wing in
both cases. The conclusion from this figure 1s
that 11ft 1s not affected by the rime ice accretion

1.67

1164 SEC ICE- %

) g 12 16
ANGLE OF ATTACK, DEG

Fig. 7. Effect of leading-edge 390 and 1164 second
rime ice on the 1i1ft coefficient of a tapered wing
for R = 4.6 x 10% based on root chord.
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for the angle of attack range considered here
because the ice shapes along the leading edge of
the wing for runs 8 and 11 do not cause premature
flow separation on the wing.

The calculated drag coefficlients shown in Fig.
8 represent the profile drag of the wing only and
do not represent the total drag, since that
requires the contribution of the induced drag. The
profile drag was calculated sectionwise from the
Squire-Young formula based on the resultant veloc-
ity at the trailing edge. Comparable results were
also obtained from the momentum deficiency in the
far wake. Here we see considerable differences
between the clean wing and the two 1iced wings
because the Reynolds number 1s relatively low (Re
= 4.6 x 10° for the root chord) and there are
large regions of laminar flow on the clean wing.
The principal contributor to the drag increase for
the iced wing is the shift in transition to near
the leading edge due to roughness of the iced sur-
face. The contribution of the surface roughness
itself to the drag is very small for Run 8 because
the extent of ice is small and its shape emulates
an airfoll 1leading edge. The additional drag
increase for Run 11 results from the surface rough-
ness spread over a large wetted area increment.
The main conclusion that can be drawn from these
comparisons is that drag increments obtained be-
tween clean and iced airfoils 4n wind tunmels
depend on transition locations on the clean wing.
If the Run 8 case represents a wing with transition
fixed at the Teading edge and the clean wing case
s transition free, the observed drag increments
from the Run 11 case are quite different from each
other. As a corollary, drag increments obtalned
from wind-tunnel tests may be meaningless without

fixing transition or knowing where transition
occurs during the tests.
0.025¢ 1164 SEC IC9
0.020 /
/,/ 390 SEC ICE
. 0015 o
D " 7 CLEMN
0.010
0.0051
0 . . . N L N —
0.4 0.8CL 1.2 L6
Fig. 8. Effect of leading edge 390 and 1164-second

rime 1{ce on the profile drag coefficient of a
tapered wing for R, = 4.6 «x 10 based on root
chord.

7.0 Concluding Remarks

A method for predicting ice accretion along the
leading edge of a wing s described and evaluated
by comparing calculated results with experimental
data for several atmospheric icing conditions ob-
tained on a MS-317 wing with infinite swept-wing
conditions. Overall, calculated ice shapes are in
good agreement with measurements.

A method 1s also described for computing the
aerodynamic properties of clean and iced wings.
This method 1s based on the extension of the

11

interactive boundary-layer method previously devel-
oped for clean and ficed airfoils. It s applied
to a tapered with wing leading edge rime ice accre-
tion of 390 and 1164 seconds to study the wing
performance degradation for a range of angles of
attack 1less than stall at a root-chord Reynolds
number of 4.6 x 108, Calculated 1ift coeffic-
jents indicate that the 11ft 1s not affected by the
rime 1ice accretion because the leading-edge ice
shapes do not cause premature flow separation on
the wing for the atmospheric icing conditions and
angle of attack range considered in the study.
Calculated profile drag coefficients for clean and
iced wings, on the other hand, show the expected
differences; that 1s, the increase 1n drag due to
leading-edge ice. The main reason for the drag
increase s the movement of the transition loca-
tions to the wing leading edge due to the roughness
of the iced surface. The contribution of the sur-
face roughness to the drag 1s relatively small for
the small ice accumulated for 390 seconds because
the extent of 1ice is small. For an 1ice shape
corresponding to 1164 seconds, however, the drag
increase is more pronounced because, in this case,
the surface roughness spreads over a larger wetted
area increment.

Both methods for predicting ice shapes along
the wing leading edge and for computing its aero-
dynamic performance degradation due to 1icing are
very encouraging. The methods are general and can
be applied to other parts of an airplane other than
a wing, including the engine intakes. Studies are
currently underway to apply these methods to deter-
mine the performance degradation of a typical twin-
engine commuter-type aircraft in measured natural
Tcing conditions.
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