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ANALYSIS OF ICED WINGS

Tuncer Cebeci*, H. H. Chen**, K. Kaupst, S. Schlmketf

Aerospace Engineering Department

California State University, Long Beach
and

Jalwon Shin+t+
NASA Lewis Research Center

A._bstract

A method for computing Ice shapes along the

leading edge of a wing and a method for predicting
Its aerodynamlc performance degradation due to

icing is described. Ice shapes are computed using
an extension of the LEWICE code which was developed

for airfoils. The aerodynamic properties of the

iced wlng are determined wlth an interactive scheme
In which the solutions of the Invlscld flow equa-

tions are obtained from a panel method _and the

to the Icing Workshop held at NASA Lewis Research

Center annually and by the several papers presented
each year at the AIAA Aerospace Sciences Meeting.
The experimental investigation of Bragg et al. _0,
in which the effects of simulated accretions of

glaze ice were measured on a wing with a NACA 0012
airfoil cross-sectlon, follows from a series of
earlier valuable contrlbutlons, ll-13 Numerlcal

investigations have already begun to consider
fixed ap_ rotary wlng performance (i.e. Kwon and
Sankarl4_b). A major requirement, however, is

solutions of the viscous flow equations are to extend the LEWICE code to the representation of

obtained from an inverse three-dlmensional finite- Ice shapes on the leading edge of a wlng and
difference boundary-layer method. A new Interac- combine it wlth a method for the determination of
tlon law Is used to couple the Invlscid and viscous performance, and to do so for three-dlmenslonal
flow solutlons, flows over complete airframes and at a modest cost

The application of the LEWICE wing code to the
calculation of ice shapes on a MS-317 swept wing

show good agreement with measurements. The inter-
active boundary-layer method is applied to a

tapered Iced wlng in order to study the effect of
icing on the aerodynamic properties of the wlng at

several angles of attack .....

1.O Introduction

The National Aircraft Icing Technology Plan1

called for the creation of a method to simulate Ice

accretion on an aircraft and predict the effect of
ice accretion on aircraft performance. This paper

presents results which suggest that the realization
of this goal is within reach, largely due to the

technical and organizational abilities of NASA
Lewis Research Center, which developed the LEWICE
code for the calculation of Ice-accretlon on air-

foils as a function of atmospheric condltlons 2,3
and supported the development of methods to deter-
mine the resulting aerodynamic properties of iced
airfoils and wlngs. 4-6 At the same time, the

so that the implications of aircraft geometry,
angle of attack, speed, and atmospheric conditions
can be predicted. It is self-evldent that thls
achievement will be of value only if the components
of the simulation method as well as the full simu-

lation method In its entirety are tested and the

results compared wlth experimental data.

It is generally accepted that the variation of

the shapes of ice wlth atmospheric conditions which
lead to rime ice can be determined on airfoils wlth
the current version of the LEWICE code and that the

shape of glaze Ice, ._It_ough acceptable, can and
should be improved, mb'l; In this work It Is
assumed that the LEWICE code Is the best available,

generally satisfactory, and amenable to improve-
ment. Thus, the problem Is to develop a three-
dimensional version of the LEWICE code and combine
it with a three-dlmenslonal method for the deter-

mination of aerodynamic properties, taking into
account the fact that Ice formations are neither

continuous nor smooth. Since one of the main com-

ponents of the present computer method to predict
ice shapes Is a method for the solution of

NASA Lewis Research tunnel has been used for the !nvlscld-flow equations, It would be advantageous

study of the process of Ice formation, and an If thls approach could also be used for the predlc-

experimental program has been initiated to measur__ tlon of aerodynamic properties of iced wings.

degradation of the _erodynamlc performance of air-
foils" and wings. It is intended that the
resulting simulation method, which wlll solve the
conservation equations and predict ice accretion,
will be evaluated by comparing the results of these
calculations wlth experimental data. This method
will then be used to assist In the prediction of
the performance degradation of wings in icing con-
dltlons and thereby assist in ensuring that th_
Regulations of the Federal Aviation Authority =
are met.

Research on aircraft Iclng can be Judged in

many ways; for example, by the presentations made

* Professor and Chairman. Fellow AIAA.

** Associate Professor. Senior Member AIAA.
+ Research Professor. Member AIAA.

++ Research Associate.
+÷+ Aerospace Engineer. Member AIAA.

It can be envisaged, at least by those wlth a
long-term view, that the Reynolds-averaged Navler-
Stokes equations might provide the basis for the
prediction of aerodynamic properties, and scrutln-
izing the related literature on the solution of
two-dimensional equations for smooth airfoils
reveals that there ls a dichotomy of view. It
would seem, however, that even these comparatively
simple flows are investigated using equations that
are further reductions of the Navler-Stokes equa-
tions, including thin-layer Navter-Stokes equations
and by the interaction of tnvlsctd and boundary-
layer equations. The former approach, like those



with higher-order equations, holds much promise,
but the cost of computation - even In two dimen-
sions Is large and becomes prohibitive for use
tn three dimensions, particularly with complete
aircraft geometries. For the foreseeable future
the Interactive approach Is to be preferred. The
lnvlscld-flow procedure may be _dentlcal to that
already utlllzed wtthln the LEWICE code so that
the tce accretion may be part of an interactive
calculation.

The Interactive method used In this paper has
been widely used for two-dimensional flows, so Its

prediction abilltles are known for a wlde range of
smooth body shapes, iced airfoils, and aerodynamic

and atmospheric conditions. In addition, It has
recently been applied to wlngs IB and, although
further developments are desirable to determine a

more efficient means of achieving the InvIscld-
viscous interaction in three-dimensional Flows, it
is clearly able to deal with wing geometries and
potentially complete aircraft. In this paper, we
describe a general procedure for predicting ice
shapes on wings and determining their Influence on
the aerodynamic properties of the wings. This
procedure incorpo[_tes a general Inviscid code
developed by Hess. "_

ThIs paper describes the extension to wIng
flows of the combined LEWICE/IBL procedure devel-
oped for airfoils. Section 3 describes the pro-

cedure developed for calculating Ice shapes along
the lead%ng edge of a wlng. Section 4 describes

the Interactive boundary-layer method for computing
three-dimenslonal flows on iced wings. In both
sections, use Is made of Hess's three-dlmenslonal

panel method for computing the Invlscid flowfield
as described In Section 2. Section S presents a
comparison between calculated and measured Iced

shapes obtained under infinite swept wing condi-

tions on a MS-311 swept wing. The results of Sec-
tion 6 show the Influence of 390 and l164-second

rime Ice on the performance degradation of a NACA

0012 tapered wlng at several angles of attack. In
thIs case, the Interactive boundary-layer calcula-

tIons were performed for a prescribed ice shape
distribution along the wing leading edge using the
procedure described in Section 4. The paper ends
wlth a brief discussion of the Implications of the

work and a summary of the more important con-
cluslons.

2.0 Three-D!mensIonal Panel Method

We use the surface-source panel method devel-
oped by HessIg for computing the invlscid flow

about a complete airplane configuration. This
method represents a general body by a set of quad-

rilateral panels as shown in Fig. I. k three-
dimensional configuration in general consists of

lifting sections, such as a wIng or pylon for which
there is a well-deflned tra11Ing edge, and nonIIft-
ing sections, such as the fuselage. Under the
formulation adopted by Hess, all panels are
assigned an independent source distribution, while

those on a lifting section are assumed to carry a
bound vorticity distribution. The variation of

this bound vorticIty In the streant_Ise direction
is assumed, while its variation in the spanwise

direction Is adjusted to satisfy the Kutta condl-
tion at the trailing edge. The complete solution
for a prescribed flow condition is obtained by
simultaneously satisfying a condition of zero nor-
mal velocity at a control point on each panel of

\
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Flg. 1. Wing/body configuration.

the body together with a Kutta condition at each
trailing-edge panel.

The nature of the Kutta condition varies
greatly among the many panel methods which are
currently available. Nhlle the Kutta condition
adopted by Hess assumed equal upper and lower sur-
face pressures at the trailing edge, other methods
make use of other derived conditions that do not

guarantee a pressure match at the trailing edge.
For Instance, Margason et al. 20 showed that
pressure mismatches of up to half of the free-
stream dynamic pressure could occur from such
alternate forms of the Kutta condition. Since we
are also Interested in the computation of lnvlscid
flows with viscous effects, and since the behavior
of the boundary-layer at the trailing edge can have
a significant effect on the overall solution, it
is believed that the approach adopted here Is more
realistic and blends In well with the previous
studies on two-dimensional flows employing Inter-
action procedures,

3.0 Three-OImensiona] Ice Shapes &Nd
Their Calculation

Before we describe our procedure for calcu-
lating the ice shapes along the leading edge of a
wing for given atmospheric conditions, It is use-

ful to review the Ice accretlon procedure used In
the LEWICE program for airfoils. LEWICE consists

of three maln modules: (1) prediction of Invlscid
flow by a panel method, (2) calculation of the

trajectories of water droplets driven by the aIr
velocities so that the Impingement pattern of the
water droplets on the surface can be determined,
and (3) a quasI-steady-state surface heat transfer

analysis In which mass and energy equations are
solved for a two-dImensIonal flow In order to

determine the Ice shape. As dlscussed in Ref. 3,
the heat balance equation for a control volume

Includes terms providing heat to or removlng heat
from the control volume. The dominant =heat

removal" term Is due to convective cooling and the
dominant heat source term Is due to the heat

released by the freezing of water entering the
control volume. The water entering a control vol-

ume consists of: (I) water droplets ImpInglng on
the airfoil surface, and (2) water 'running back"
from an adjacent upstream control volume.



Theaboveprocedurefor alrfolls hasbeenfound
to be remarkably good for predicting Ice shapes,
(see for example Ref. 17) despite the very
emplrtcal nature of the expressions used In the
heat balance as well as in the physical model of
the tce accretion process. Studies conducted by
01sen and Nalker _1,22 show that at aircraft

speeds there Is no flow of liquid over the surface
of the ice after a short lnttlal flow, even at

auxiliary equatlons necessary to solve the integral
equation. Since Eq. (l) ts based malnly on data
correlation with roughness parameters chosen so
that the computed Ice shapes fit the experimental
data, any attempt to add a spanwtse heat transfer
coefficient to the heat balance equation will be
empirical and can only be done where experimental
data exists. As a first step, however, _t ts pru-
dent to leave the heat balance In its two-

subfreezing temperatures that are close to the dimensional form and assume tt to apply to a three-
freezing polnt. Instead, there are very large dimensional body which ts expressed In an equiv-
stationary drops on the lce surface that lose alent two-dimensional form. One approach, followed
water from their bottoms by freezing as water ls by Potapczuk and 81dwell _, Is to perform the
added to the droplets by the addition of trajectory calculations for a three-dimensional
microscopic cloud droplets. Thls observation flowfleld by determining the Impingement patterns
disagrees wlth the existing physical model used In of the water droplets resulting from the three
the LEWICE code, since It assumes that there ls a components of the velocity field and apply thls
thtn liquid continuously flowing over the Ice along the streamlines on the wing. Another
surface. While thts model disagrees wtth the approach, followed here, ls to approximate the 30
experimental evidence, especially for conditions wing by an equivalent yawed infinite wlng at each
leadlng to horn-shaped clear (glaze) Ice, Llt does spanwlse station. In this case, the flowfleld can
reasonably well for rime tce which forms when the be calculated by a three-dimensional panel method
alr temperature ts low enough to cause the cloud and the particle trajectories calculated In a
droplets to freeze almost Immediately on tmpact, quasi-three-dimensional manner, so that the two-

dimensional heat balance can be applied along the
The role that the liquid layer plays tn the airfoil section normal to the leading edge of the

formation of glaze Ice has been further elaborated
on by Hansman and Turnock 23 and Bllanln 24, who
point to the surface tension phenomenon as the most
11kely source for the observed deviations. There
ls convincing evidence from tests with variable
surface tension that Ice growth depends on T_; -_
Although a smooth water film may form at the stag-

wlng. Each approach has its advantages and must
be evaluated against experimental data. Studies
reported by Potapczuk and Bldwell show that their
approach leads to lce shapes which are in good
agreement wtth experimental data.

It is also useful to seek other approaches to

nation point, It soon breaks up by the beadlng extend the two-dimensional tce accretion model to
process and freezes tnto Irregular rough lumps tha_ three-dimensional flows since the computer cost of
enhance heat transfer and speed up the tce growth, predicting an lce shape at a glven spanwlse section
The parameters controlling transltlon from a smooth
fllm to beads and to rough tce formation are not
well known at thls time. For thts reason, care is
required to extend the tce accretion procedure from
two- to three- dimensional flows.

In principle, the extension of the LEW[CE air-
foll procedure to three-dimensional flows requires
that the trajectory calculations be performed for
the three components of the velocity obtained from
a three-dimensional panel method and a heat trans-
fer balance which also includes the spanwlse
direction. While the former can be done wtth
increased computer cost, the latter Is difficult
In view of the empirical nature of the heat trans-
fer coefficient, h used to represent the con-
vective cooling. _n the present LENICE program,

this parameter for turbulent flows Is expressed by

cf/2
hc = [ ] PUeCp (1)

Pr t + V(cf/2) (1/St k)

Is relatively high. For example, the approach of
Potapczuk takes about 20 minutes on a Cray, while
the present approach takes less than 7 mlnutes. If
the wlng Is approximated, say by ten airfoil sec-
tions, then the use of the computer program to pre-
dtct the ice shapes along the leadlng edge of a
wing can require between one and three hours. It
Is also possible that the dominant effect 11es with
the heat transfer balance and that "more accurate a
trajectory calculations may not have an appreciable
effect on the tce shapes. The answers to all these
questions, however, can be provided by comparing
the calculated lce shapes with experimental data.

3.1 Present Approach for Calculating Ice Shapes

on mnqs

To describe our approach, which Is based on the
extension of the LEWICE airfoil code to wings, we
use the three-dlmenslonal panel method described
In Section 2. For a wing defined by streamwtse
cross-sections, we calculate the velocity compoQ-

through the Reynolds analogy wtth local skth- ents V_, V;, V_ In a Cartesian coordlnate system x,
frlctton coefficient, glven by an expression Y' _ at a _peclfted incidence angle a measured from

.._w wlth roughness, the x-axis. If we denote the unlt vectors In thlsvalid for a flat-plate
coordlnate system by (_I, _2, _3), then the veloc-
ity vector can be written as2

cf o.41 ]} (2)
2-- = {ln [864 (et/k s) + 2.568

The parameter St k represents a dlmenslonless rough-
ness parameter given by

u k s -0.2
St k • 1.16 (_) (3)

The momentum thickness, e t, ls calculated by a
momentum Integral method which employs a smooth
flat-plate skin-friction coefficient as one of th_

= VEe1 + V_; 2 + V_; 3 (4)

We now approximate the wlng by an equivalent yawed
infinite wlng at each spanwlse station. For thls
purpose, we define a new Cartesian coordinate sys-
tem (x,y,z) constructed so that x ts normal to the
leading edge of the wtng and y ts normal to the
alrfotl chord c n. If we let = t represent the local
incidence angle of the chord c with respect to the
x-axis, as shown in Ftg. 2, with aand b denoting
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the leading edge of the chord line, then it can be
shown that for an airfoil section defined normal
to the leading edge (X/Cn, Y/Cn) the relationship
between the (x,y) and (x,y) coordinates can be

expressed by

a Cn [(X/Cn) c°San ÷ (Y/Cn)Slnan]
- . - + -- (Sa)
C C C COSk

i Cn b x__ slna n + )6_ cOSan] (5b)
C = c [_nn - Cn Cn

Here a. corresponds to the local incidence angle
of the _hord cn with respect to the _n-aXts, which
represents the coordinate normal to the leadlng

edge defined in the (x,z) plane, a n ls related to
a t and k by

tanat
tanan " cosk (6a)

The relation between _the airfoil chor.d lengt h nor-

mal to the leading edge of the wlng and the stream-

wise airfoil chord length Is

COSatCOSX
c (6b)

c n - cosa n

The trajectory calculations require that the veloc-
ity components tn three directions are given and,
stnce _he _anel method computes the velocitles for
the (x,y,z) coordinate system, it Is necessary to
determine them tn the (x,y,z) coordinate system so
that ice accretion can be computed on an equivalent
two-dlmenslonal model. If we denote the unityec-
tors of the coordinate system (x,y,z) by (%,J,_),
then the relationship between the unit vectors in
the two coordinate systems are

i = e 1 cOSanCOSk - e 2 sln_ n - e 3 cOSanStnk (Ta)

= el stnanC°Sk + e2 c°San - e3 sinanStnk (Tb)

A

= eI sink + e3 cosk (7c)

Each veloctty component, Vx, Vv, Vz, in the (x,y,z)
coordinate system can be obtAt_ed by taking a dot
product of the velocity vector V with its respec-
tive unit vector, that Is,

Vx = V • i = V_ cOSanCOSk - V) slnan - V) cOSenSlnk

(Ba)

Vy = V • i = V_ slnanCOSk + V) cosan - V) slnanSlnk

(8b)

v z . _ • k : v_ sink + v_ cosk (Bc)

Simlla[ly, for a freestream velocity given by

_ = V®[e 1 cos_ + e 2 stna] (g)

the components of the freestream veloclty in the

(x,y,z) directions are:

(Vx) ® - _ • i = V®[cosa cOSanCOSk - slnanSina]

(lOa)

(Vy)® = _ • i = V®[cosa slnanCOSk + cOSanStna]

(lOb)

(Vz)- : V== • k = V [cosa sink] (lOc)

Since our model is for a yawed infinite wing. then

Vz given by Eq. (8c) and (Vz)® by Eq. (lOc) must be
equal. This leads to the relation

V_ - V® tank cosa - VR tank (ll)

which allows the expressions given by Eq. (B) to
be expressed In the follow1ng forms

cos_ n cos_ sln2k
COS_ n

Vx . V_ cos_ - V_ sin_ n - V® cosk (12a)

sina n sina n cosa sin2k

Vy - V_ _ + V_ COS_n - V® cosk (12b)

Vz . V® cosa slnk (12c)

wlth total velocity VT given by,

2 V2z) 2 2V_. (V2x+ Vy + : Vi + V_

+ (V®cosa - V_)2tan2k (13)

The trajectory calculations for an airfoil

section in a plane normal to the leading edge of
the wing are similar to those for a two-dlmenslonal

flow. Instead of solving two equations of motion
in the x and y directions, we now need to conslder
three equatlons In the x,_ and z dlr_c_)on)_Yen
though the pa_tIEle paths are calculated only In

plane normal to the leading edge of the wing
according to the model discussed previously. To
elaborate on this point further, we use the tra-

Jectory analysis discussed in Ref. 3 and apply
appropriate modifications to incorporate our equiv-
alent infinite swept wing approach into the two-
dimensional analysis. 3

Let us consider a water particle in a flowfield
where the freestream velocity makes an angle
with the x-axls, as shown In Fig 3. The (x,y)

coordinate system represents the alrfoll coordinate
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ftg. 3. Water partlcle velocities.

system wlth _nden°tlng the local total veloclty to
which the parttcle is subjected and Is computed by
the_panel method. The particle velocity ts denoted
by VD and the relattve air velocity that the parti-
cle _xperiences by

_r " _n - _p 114)

where

_n " Vxi * Vyj (lsa)

Vpxi • Vpy = ; . (lSb)

From Eqs. (14) and (15b), the relative air veloc-
Ity with respect to the moving parttcle can be
expressed as,

_r = lVx - Vpx)_ * (Vy - Vpy)_ 116)

that the unlt vector, er' In the _r directionso
can be computed by

_r Vx - Vpx ; Vy - Vpy _ (17)
er = Irl_ = Vr ÷ Vr

We now apply Newton's law of motion to the particle
In the er-dlrectlon. Neglecting the llft force,
the forces ac_tng on the particle correspond.to the
drag force_ fa,. and gravitational force, Fq, so
that wlth rp = xl * y_ and wlth m denoting th_ par-
tlcle mass,

d27

m---_dt2 = _a + _g (18)
where

2
. Vr

_a = erCdP 2- Ap (lga)

= mg(l sln_ - j cos_) (19b)
g

Here Cd ts the drag coefficient, p the density
of air, Ap the cross-sectional area perpendicular
to the flow, and g the acceleration of gravity.

Resolvlng Eq. (18) lnto its components and
using the solutions in Eq. (lg), we can write

d2Xp CdPAP

dt 2 = _ Vr(V x - Vpx) + g stnp (20a)

d2yp CdPAP

dt-T = 2T Vr(Vy - Vpy) - g cosl3 (20b)

where

d2Zp

dt 2--= 2m Vr[V z - Vpz] (20c)

dzD (21)
Vpz = dt

If we now include the components of the partlcle
and lnvlsctd air velocities In the k-direction In
the definition of the relative atr veloctty Vr with
respect to the moving particle, we can write the
resulting relative atr velocity as

_r " (Vx - Vpx)i * (Vy - Vpy)_ + lVz - Vpz)k 122)

If we now invoke the yawed infinite swept wlng
assumption which requires that the spanwlse Invis-

cld veloclty component Vz is constant, then we
can write

Vz = V= slnX cosa (23)

Wlth thls assumption, we note that with A =

CdPAp/2m, Eq. 120c) Is of the form

dV

.____P_Z__= AVrdt _ dG 124)
Vz - Vpz

since

lm

dt dt 2

Assuming that the right-hand side of Eq. (24) ls a
function of t only, we can Integrate Eq. (24) and
write the resulting expression in the form

I o-G(t)
Vpz = Vz - (V z - Vpz)_ (25)

where VI denotes the particle release velocity.
EquatlonP_25) shows that If the particle ts re-
leased wtth a speed equal to the total tnvlscid
velocity, then the spanwlse velocity component of
the particle Is equal to the lnvlscld spanwlse vel-
ocity which ls constant. As a result, the relative
alr velocity for a yawed Infinite swept wing, Eq.
(22), is the same as that for a two-dlmenslonal
flow, Eq. (20). Thls means that the expressions

used In trajectory calculations for two-dlmenslonal
flows can also be used for flnlte swept wings when

the flowfleld Is computed by a three-dlmenslonal
panel method and the spanwlse velocity component Is
assumed to be fixed by a yawed wing approximation.

4.0 Threq-plmenslonal Interactlve Boundary-Layer
Method

As In two-dimensional flows, the Interactive
method for three-dlmenslonal flows Is based on the
solutions of the tnvlscld and boundary-layer



equations. An interface program, Illustrated by
Fig. 4, is placed between the fnvisctd and three-
dimensional lnverse boundary-layer methods to pro-
cess the geometry and lnvtscid veloclty data for
Input to the boundary-layer program. The basic
input to thts program Is (l) the definition of the
wing configuration that is used by a geometry sub-
routine to construct a nonorthogonal coordinate
system and (25 the associated geometrical param-
eters, which consist of the geodesic curvatures and
metric coefficients needed in the boundary-layer
calculations. Some of the generated data ls used
later In a velocity subroutine to determine the
tnvtscld velocity components at the boundary-layer
grid points and to transform the lnvlscid velocity
components on the surface, calculated in a
Cartesian coordinate system, into the boundary-
layer coordinate system. This operation consists
of calculating dot products of velocity vectors as
well as chordulse and spanwtse interpolation.

¢

Further velocity and geometry data processing Is
carried out In a subroutine that separates the
generated information into upper and lower surfaces
of the wing for boundary-layer calculations.

Ftg. 4. The Interactive boundary-layer method.

The above procedure is appropriate to wings
without lce and has been used to c_pute transonic
flows on wing/body configurations _° where, since
the wing leading edge was free of Ice, there was
no difficulty In generating solutions near the
attachment ltne by constructing the nonorthogonal
coordinate system and computing the geometrical
properties of the wing. For a wing with ice, gen-
eration of the boundary-layer solutions near the
leading edge can pose problems since the geodeslc
curvatures and metric coefficients must be deter-
mined for an irregular surface. In addition, the
formulation of the interactive boundary-layer
method developed for iced atrfotls must take
account of the three-dimensional nature of the
flow. Thus, It is necessary to make changes in
the strategy for solving the three-dimensional
boundary-layer equations for an iced wing. These
are considered below.

4.1 Boundary-Layer Equations

The three-dimensional boundary-layer equations
for a nonorthogonal coordinate system are given In
several references (for example, Ref. 26). With
Reynolds stresses .modeled by the eddy-viscosity
concept, they can be wrt_ten as,

a___tub2 sine) * aza (Whl sine) + ¢ya (Vhlh2 sine) = 0ax
(26)

u au , w au au KlU2COte K2w2cosece
hl ax _2 _-_ + v _-_ - +

_a_p_ + ¢_te cq_ece a_2
÷ K12uw " - ax azph1 Ph2

a au
• , _-_ (b _y) (27)

hlU axaW, _22w_aw + v _-_aw_ K2w2cote + KlU2COSece

cote cosece a_2 cosec2e a_2

+ K21uw = ph1 ax ph 2 az

+ v _ (b _y) (285

Here x denotes the coordinate along the lines
formed by the intersection of the wing surface and
planes representing constant percent semtspan; z is
the coordinate along the constant percent chord-
llnes that generate the wing surface, with chord
defined as the maximum length line between leading
edge and trailing edge. The third coordinate y
denotes the direction normal to the wing surface,
and the parameter h denotes the metric coeffic-
Ients, with e the angle between the coordinate
lines x = const and z = const. For an orthogonal
system, e = _/2. The parameters K1 and K2 are
known as the geodesic curvatures of the curves z =
const and x = const, respectively. Equations (26)
to (28) are subject to the following boundary con-
ditlons

y = O, u = O, v = O, u = 0 (29a)

y = 6, u = Ue(X,Z), w = We(X,Z) (29b)

The so]utlon of the above equations also
requires initial condttlons on two Intersecting
planes; those in the (y,z) plane at a specified
chordwlse location are determined from the solu-
tions of the equations discussed in Subsection 4.3.
Those on the (x,y) plane, at a specified spanwise
location z = zo, with zo corresponding to, say, the
root location, are determined from the solutions
of the quasl-three-dlmenslonal form of Eqs. (26)
to (28) with all derivatives with respect to z
neglected, that ls,

a_ (uh2slne) ÷ aax _ (Vhlh 2 sine) = 0 (30)

u au + vau KlU2COte K2w2cosecehlax a-y - + * KlUW

cosec2e a_p_+ a au

=- _h---'_ax _(b_5
(31)

u aw

h1 ax---- + v _y - K2w2cote + KlU2COSeCe + K21uw

cote cosece a p_, v a aw
= phI ax _ (b _-)

(32)

subject to the same boundary conditions given in
Eq. (29).

4.2 Interact!Qp Law

To account for posslble flow separation, as In
two-dimensional flows, we use the Interaction law
of Veldman 27 where, for airfoil flows, the edge
velocity is expressed as the sum of an Invlscld

velocity u_(x) and perturbation velocity _Ue(X) due
to viscous effects, that is,

Ue(X) = u_(x) + _Ue(X) (33)

The perturbation velocity ts given by the Hllbert
integral



&Ue(X)= !_ j xb d_ (Ue&*) xd_- o (34)
X a

in the interaction region (x a, Xb).

To extend thls Inverse formu]atlon to three-

dimensional flows, It Is necessary that the two-
dimensional interaction formu]a given by Eq. (34)
be either modified to account for the interaction
In the x- and z-directions or be rep]aced by
another formu]atton which provides a re]atlonshlp
between displacement surface and external ve]octty.
Here we use the former approach, as described In
Ref. 18, and first generate an lnlttal dtsp]acement
surface by so]vlng the quasl-three-dlmenstona]
boundary-]ayer equations subject to the boundary
conditions given by Eqs. (29) and (33) with the
externa] ve]oclty distribution u_(x) obtained from
the pane] method. The second step tnvo]ves inter-
action between the tnvtscld f]ow equations, and the
quasl-three-dtmenslona] f]ou equations. As in two-
dlmenslona] flows, the solutions of the boundary-
]ayer equations are used to compute distributions
of b]owlng ve]oclty on the surface, and these allow
the Invlscld f]ow so]utlons to be updated. In step
three, after the calculation of the lnitla] condi-
tions In the (y,z) and (x,y) p]anes, the fu]]y
three-dlmenslona] boundary-]ayer equations are
so]red wtth the externa] ve]oclty components
resu]tlng from step two. As before, the spanwlse
ve]oclty component ts assumed to correspond to Its
tnvtsctd value. The viscous f]ow solutions are
obtained by marching In the spanwlse direction at
each advancing chordwlse ]ocatlon. Thls represents
the f_rst phase tn an Interactive ]oop that In-
volves the ful]y three-dlmensiona] boundary-]ayer
equations. In the subsequent phases, as before,
the b]owtng veloctty distribution ts used to obtain
tmproved tnvtsctd flow so]utlons, so the fully
three-dtmenslona] boundary-]ayer equations are
so]ved for tced wings as for c]ean wings tn tran-
sonic flow. 18

The vlscous effects In the spanwtse component

we are assumed to be second order, although their
neglect ts contrary to the lrrotatlonallty condi-
tion. However, trial calculations involving vari-
ations of both veloctty conditions showed that
errors were smaller than those associated wlth the
convergence of the solutions.

4.3 Transformed Equations

As tn two-dtmenstona] f]ows, we express the
boundary-layer equations tn transformed vartab]es
for computattona] purposes. At first, when the
equations are solved for a prescribed external
ve]octty distribution (standard prob]em), we use
the Fa]kner-Skan transformation and a modlfted
verston of this transformation for the inverse
mode. In the former case, the independent vari-
ables are deflned by

ue 1/2 x
x = x, z = z, n = (_-_) Y, s = J hldX

o (3s)

For the dependent variables u, v and w, we Intro-
duce a two-component vector potential such that

uh2stn e = _y, WhlSln e , a._#Oay'

Vhlh2slne - (_x * at= _-_) (36)

In addition, dimensionless parameters f and g are
defined by

= (UeVS)l/2h2slnef(x,z,n)

(37)

U o

= (Uevs)l/2 _ee hlslneg(x'z'n)

(bf')' ÷ ef' + m2(f') 2 ÷ msf'g' + m8(g')2 + mll

af' af'
= mlof, _ + m7g' _ (38)

(bg')' + eg" + m4f'g' + m3(g')2 + mg(f') 2 + m]2

= mlof' aax-_ + m?g' a__az (39)

af' a_gL
e' = mlf' + m6g' + mlO _ + m7 az

The coefficients ml to m12 are defined by

L a_ (CUES h2slne)m] =(¢UeS h2stne) -] hi ax

s au_ uo

m2 " - UehIax + SKlC°te' m3 • sK2 _ee cote,

(40)

m4 _sK21, ms L u-_o aUe u°
" " - 2 h2 a"Z-- SK]2 _e "

ue

uo
L a__ (¢u-_- hlsinem6 = (CUES hl stne)-I h2 az ue)

su ° uo 2

m7" m8= -sK2( ) csce,

mg -sK] u¢ csce, s
" u° mlO - h1

u e u e 2

mll--[m 2÷m5 ÷m ],

we 2 we

m12 = - [m3 1_-1 ÷ m4 (_oo) + m91 + m13o

(41)

mlO awe weaw e

m]3 = uo ax + m7 2 az
u o

In terms of transformed variables, boundary condi-

tions given by Eq. (29) become

n = O: f = g , f' = g' = 0
(42)

we

n • _e: f' m ], gl m go



The form of the transformed quasi-three-dimensional
equations (Eqs. (30) - (32)) is Identical to the
form of Eqs. (38) to (40), except that

af' aq' aUe aWe-- . = = _ 0 (43a)
az az az az

and wlth we corresponding to lts lnvlscid value,
are

n = O: f = g = f' = g' = 0 (49a)

n = he: f' = Ue' g' = We (49b)

and m5 and m6 are now defined by:

U__o

m5 = -K12s Ue , m6 - 0
(43b)

To solve the equations in the inverse mode, we
define independent variables by

uo 112 x
x = x, z = z, Y = (_-_) y, s = J hldX (44)

O.

and relate the vector potentials _ and 9 to f and g
by

= (Uovs)l/2 h2slnef(x,z,n)

(45)

= (uovs)l/2 hlsineg(x,z,n)

and with a prime now deQottng differentiation with
respect to Y and ue and we denotlng edge velocity
components normalized by reference velocity uo,
Eqs. (26) to (28), with e' defined by Eq. (40), are
written as

(bf')' + ef" + m2[(f')2 - (Ue)2] + m5[f'g' - UeWe]

a_
÷ me[(g')2 - (We)2] = mlo(f' a_- " Ue a--_ )

af' aUe
÷ %(g' aT - _e a--z-)

(46)

(bg')' + eg' + m3[(g')2 - (We)2] + m4[f'g' - UeWe]

a_ e
÷ mg[(f')2 - (Ue)2] = mlo(f' _x' - Ue a--x-)

+ mT(g' _ We a_eaz - a-_-)

(4_)

The coefficients ml to mlO are now given by

_.t 1/2 a
ml = hlh2slne ax (sl/2h2 stne)' m2 = SKlC°te'

m3 = sK2c°te, m4 = -SK2l, m5 = -sK12'

s 1/2 a.. sl/2h1
m6 = hlh2slne az ( sine)

(48)

m7 = s/h 2, m8 = -sK2csce,

m9 = -SKlCSCe, mlO = s/h 1

The transformed boundary conditions for the system

of Eqs. (46) and (47), with ue given by Eq. (33)

The quast-three-dtmenslonal form of the equa-
tions, which are subject to the boundary conditions

given by Eq. (49), are obtained from the above
equations by setting

aO a_
af' ag' e e
a'-z-= az = _ = az , 0 and m6 = 0 (SO)

To generate the initial conditions near the
leading edge of the iced wing, we use quasi-three-
dimensional boundary-layer equations expressed in
the inverse mode given by

(bf')' + el' + m2[(f')2 - (Oe)2] ÷ m5(f'g' - UeWe)

a5e
÷ me[(g')2 - (We)2] = mlo(f' _ - Ue a-x-)

(51)

(bg")' * eg" + m3[(g')2 - (_e)2] ÷ m4(f'g' - UeWe)

+ m9[(f,)2 (_e)2] = mlo(f, ag'ax Ue .-T-awe_ _ o_)

(52)
af'

e' = mlf' ÷ ml0 aT (53)

The above equations can be further simplified
if we assume that two adjacent defining sections
of a wing are connected by straight line develop-
ment, as commonly used in the wing design. This
feature simplifies the problem of shaping the metal
for a wing surface. As a consequence, we can
neglect the geodesic curvature of x = constant

lines, namely K2, and thus set m3 = m8 = O. From
the definitions of m4 and m S, it can be seen that

as a result of the above assumption, these two
terms are also small and can be neglected. We
further assume that the local varlatlons In cross

sections in the spanwise dlrectlon are sma11.
Examination of the terms ml, m2 and m9 for a typi-

cal wing shows that m 2 reaches a value less than
O.l very close to the leading edge (x/c < O.Ol)

and m9 reaches a maximum value of 0.2. However,
their magnitudes rapidly decrease with increasing
x and reach a very small value at x/c < O.l. This
behavior a11ows us to neglect m2 and mg in the

equations and set m I = I/2.

4.4 Solution Procedure

A detailed description of the solution proced-
ure will be reported later separately. Briefly,
the boundary-layer equations expressed tn terms of
transformed variables are solved with Keller's two-
point finite-difference method 26 (box scheme)
with boundary conditions expressed In inverse form
with the interaction law described in Subsection
4.2. Oependlng on the complexity of the flowfleld,
two forms of the box scheme are employed. In
regions where all velocity components are positive,
the regular box scheme is used. In regions of
either a negative spanwlse velocity component or



negativestreamwlsevelocitycomponent,the zig-zag
box scheme described In Ref. 26 Is used.

5.0 Comparison of Calculated and Measured
Ice Shapes on a Swept glng

The approach described In Section 3 was applied
to the calculation of ice shapes that have been
observed on a MS-317 swept wing obtained under
infinite swept wing conditions. These data were
also used for a similar purpose by Potapczuk and
81dwel125, as discussed in Section 3.

(a)
In general, the infinite yawed wing conditions

apply to the mld-semlspan section of wings wlth an

aspect ratio greater than about five. This approx-
lmatlon becomes progressively less accurate as the
tlp or the root of the wing is approached but in
most instances It can sttll provide reasonable
answers. A point to remember about the use of this
approximation wtth finite aspect ratio _lngs ts
that although the flow may have the desired char-
acterlstlcs, lts lift is always less than the lift
of a wing with infinite aspect ratio. This may
lead to problems In comparing calculations wtth
experimental data unless the aspect ratio or the
pressure distribution ts also given. If the pres- (by
sure distribution ts not available, the given angle
of attack may not properly represent the experi-
mental conditions. Similar problems may also
arise in simulating wlnd-tunnel conditions by
calculating the corrected incidence and llft coef-
ficient In free alr, because the trajectories in

the two cases may be far from identical. One solu-
tion to the wind-tunnel problem, which may be the

only acceptable solution for a swept wing spannl-ng
the tunnel, is to calculate the flowfleld about the

wlng In the presence of the tunnel walls. Thls Is
within the capability of the Invlscid method dis-
cussed In Section 2, and studies are underway using
this capability to investigate the effect of wind (c)
tunnel walls on the pressure distribution.

The comparisons presented here are for the test
conditions given In Table I. Additional studies
for other test conditions are In progress and wlll
be reported later. The calculated ice shapes in
Figures 5 and 6 were obtained for the untapered
wlng wlth a MS-311 airfoil section defined stream-

wlse with a sweep angle of 30° and an aspect ratio
of six. All trajectory and Ice accretion calcula-

tions were carried out wlth Invlscid flow computed
on the mtd-semlspan section where the spanwtse
pressure gradient was negligible. All calculations
were performed for one time step to save computer (d)
time, which Is approximately 7 minutes per run on
the Cray computer. The increase in time, In com-

parison wlth the two-dlmenslonal case, is primarily
due to the trajectory calculations where, despite

Table I. Test Conditions for MS-317 Ice Accretion

Experiment of Ref. 8, V. = 15Q mph, d = 20 pm,
LWC - 1.03 gm-°.

T t

Run {*_P) _ (deQ) (ks/c)l

l 15 1164 2.0 0.00192
6 15 1164 8.0 0.00192
7 15 390 2.0 0.00192
8 0 390 2.0 0.00127
9 0 390 8.0 0.00127
I0 0 1164 8.0 0.00127

II 0 I164 2.0 0.00127

_._::.--..": ......•

,,(
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d

Flg. S. Comparison of calculated (solid lines) and
measured (dashed lines) Ice shapes. Rime Ice: (a)
Run 8, (b) Run 11, (c) Run 9, (d) Run 10.

the yawed infinite wing approximations, the compu-
tation of the off-body velocities involves repeated
)arge matrix multiplications tn which all wing
panels are represented.

Figure 5a shows a comparison of measured and
calculated tce shapes for Run 8 which corresponds
to T, = 0 °, a - 2°, t = 390 sec. As can be seen,
the agreement between measured and calculated
results ts remarkably good. The calculated results
for a calculation ttme of 1164 sec and for To, = O'F
and _ = 2" (Run 11) are shown In fig. 5b and indi-
cate reasonable agreement wtth measurements despite
the one time step used In the calculations. It ls



(a)

S; I12
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Fig. 6. Comparison of calculated (solid lines) and
measured (dashed lines) Ice shapes. Mixed lce: (a)
Run 7, (b) Run 1, (c) Run 6.

expected that the tce growth will have some effect
on the velocity field and on the calculated droplet
Impingement. A comparison of predicted and mea-
sured ice shapes obtained for T® = O°F at _ = 86
for t = 390 and 1164 sec. (Runs 9 and lO) are shown
In Figs. Sc and Sd, respectively. The agreement
ls again reasonable, keeping tn mind that only one
t_me step was used _n the calculations.

The next Set of studies Was conducted for a

slightly higher freestream temperature of T= =
15°F, representing an icing condition for which a
mixed Ice growth was observed. Run 7 in Fig. 6a
for = = 2 ° and t = 390 sec. indicates good agree-
ment between experiment and theory, except for some
devtatlon on the upper surface. The results in
Ftg. 6b at the large time step of t = 1164 sec.
(Run 1) are more or less In agreement in predtctlng
the amount of tce accumulated, but they differ In
predicting Its shape. It is known from twn-
dimensional calculations that a large number of
relatively short time steps are needed to predict
horn-shaped Ice for glaze ice. Since the mixed
Ice formation tends toward glaze Ice shapes for
large times, it is not surprising that one time
step calculation ts not sufficient to predict the
actual growth of the Ice shapes. Stm_lar comments
apply to Fig. 6c, where comparisons are for a large
time step of t . 1164 sec. (Run 6), but at = - 8 ° .
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6.0 Performance Degradation of an Iced
Tapered Wlng

The Interactive boundary-layer method of Sec-
tion 4 was used to study the performance degrada-
tion of an Iced wlng having RS-317 alrfoll stream-
wlse sections, an aspect ratio of 3.43, and a taper
ratio of 0.4. Iclng conditions were chosen to
correspond to those In Runs 8 and 11, shown In
Table 1. The pressure distribution on the wing was
computed at four locations defined by the midsec-
tion of each wlng-sectlon with a hundred panels on
each defining airfoil section. The Ice shapes
corresponding to this pressure distribution were
computed with the method of Sectlon 3 tn the middle
of each wing section and were used to distribute
lce along the leading edge of the tapered wlng.
The computed Ice shapes for a = 2 ° were then
assumed to be the same for all angles of attack on
the wing tn the investigation of the performance
degradation of the wing due to lce shapes corres-
ponding to the atmospheric conditions given In Runs
8 and 11. At a specified angle of attack, wlth the
defined ice shapes along the leading-edge of the
wing, calculations were performed with the method
of Section 4; that is, lnviscld flow calculatlons
performed for an iced wing were followed by the
inverse three-dimensional boundary-layer calcula-
tions to determine the blowing velocity distribu-
tion to be used in the incorporation of viscous
effects into the Invlsctd method. The tnvlscld
flow solutions made use of four ltfttng strips, and
the viscous flow calculations included boundary-
layer calculations on the wlng and in the wake, the
latter requiring velocities at off-body points in
the potential field. This interactive and lter-
atlve procedure was repeated until the solutions
converged. The lift coefficients were then calcu-
lated from the lnviscid method for each individual

strip and Included the contribution of ice protrud-
ing beyond the wing contour and the drag coeffic-
Ients from the boundary-layer calculatlons.

Figure 7 shows the variation of the calculated
llft coefficients as a function of angle of attack.
Stnce the primary purpose of the calculations was
to demonstrate the increase in drag due to Ice on
a tapered wtng, the angle of attack range was not
extended to stall, which would occur at relatively
high angles of attack for low aspect ratio wings.
The higher lift coefficient than for the clean ulng
shown for the two lced wings Is due to the normal-
tzatton w_th the wing area of the clean w_nq In
both cases. The conclusion from this figure ls
that lift ls not affected by the rime Ice accretion

1.6 1164 SEC ICE_

390 SEC ICE/_CLEAN

I.4 "_

0.8

0.4

0
0 4 8 12 16 20

ANGLE OF ATTACK, DEG

Fig. 7. Effect of leadlng-edge 390 and I164 second
rlme ice on the llft coefficient of a tapered wing
for R = 4.6 x 106 based on root chord.



for the angle of attack range considered here
because the Ice shapes along the leadtng edge of
the wlng for runs 8 and 11 do not cause premature
flow separation on the wing.

The calculated drag coefficients shown tn Fig.
B represent the profile drag of the wlng only and
do not represent the total drag, since that
requires the contribution of the Induced drag. The
proflle drag was calculated secttonwtse from the
Squire-Young formula based on the resultant veloc-
Ity at the trailtng edge. Comparable results were
also obtained from the momentum deficiency in the
far wake. Here we see considerable differences

between the clean wtng and the two tced wings
because the Reynolds number Is relatively low (Re
= 4.6 x 10 6 for the root chord) and there are

Interactive boundary-layer method previously devel-
oped for clean and iced alrfolls. It ts applled
to a tapered wlth wing leadtng edge rime Ice accre-
tion of 310 and 1164 seconds to study the wtng
performance degradation for a range of angles of
attack less than stall at a root-chord Reynolds
number of 4.6 x 106 . Calculated 11ft coeffic-

Ients indicate that the ltft Is not affected by the
rlme ice accretion because the leading-edge tce
shapes do not cause premature flow separation on
the wing for the atmospheric icing conditions and
angle of attack range considered tn the study.
Calculated profile drag coefficients for clean and
Iced wings, on the other hand, show the expected
differences; that ts, the increase In drag due to
leading-edge Ice. The matn reason for the drag
Increase Is the movement of the transition loca-

large regions of laminar flow -on the clean wing. tions to the wIng leading edge due to the roughness
The principal contributor to the drag" Increase for of the Iced surface. The contribution of the sur-
the iced wing is the shift in transition to near

the leading edge due to roughness of the ited sur-
face. The contribution of the surface roughness
Itself to the drag Is very small for Run 8 because
the extent of ice Is small and its shape emulates

an alrfoll leading edge. The additional drag

increase for Run II results from the surface rough-
ness spread over a large wetted area Increment.
The main conclusion that can be drawn from these

comparisons is that drag Increments obtained be-
tween clean and iced airfoils in wind tunnels

depend on transition locations on the clean wing.
If the Run 8 case represents a wing with transition

fixed at the leading edge and the clean wing case
is transition free, the observed drag increments

from the Run 11 case are quite different from each
other. As a corollary, drag increments obtained

from wind-tunnel tests may be meaningless wlthou_ Icing conditions.
fixing transition or knowing where transition
occurs during the tests.

face roughness to the drag ts relatively small for
the small Ice accumulated for 390 seconds because
the extent of ice is small. For an Ice shape
corresponding to 1164 seconds, however, the drag
Increase Is more pronounced because, In this case,
the surface roughness spreads over a larger wetted
area Increment.

Both methods for predicting ice shapes along
the wing leading edge and for computlng its aero-

dynamic performance degradation due to icing are
very encouraging. The methods are general and can
be applied to other parts of an airplane other than

a wing, including the engine intakes. Studies are
currently underway to apply these methods to deter-
mine the performance degradation of a typical twln-

engine commuter-type aircraft In measured natural
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