164 research outputs found

    Measurement of the variation of electron-to-proton mass ratio using ultracold molecules produced from laser-cooled atoms

    Get PDF
    Experimental techniques to manipulate cold molecules have seen great development in recent years. The precision measurements of cold molecules are expected to give insights into fundamental physics. We use a rovibrationally pure sample of ultracold KRb molecules to improve the measurement on the stability of electron-to-proton mass ratio (μ=meMp\mu = \frac{m_{\rm e}}{M_{\rm p}}). The measurement is based upon a large sensitivity coefficient of the molecular spectroscopy, which utilizes a transition between nearly a degenerate pair of vibrational levels each associated with a different electronic potential. Observed limit on temporal variation of μ\mu is 1μdμdt=(0.30±1.0)×1014\frac{1}{\mu}\frac{d\mu}{dt} = (0.30\pm1.0) \times 10^{-14} year1^{-1}, which is better by a factor of five compared with the most stringent laboratory molecular limits to date. Further improvements should be straightforward, because our measurement was only limited by statistical errors.Comment: 10 pages, 4 figure

    Does matter wave amplification work for fermions?

    Full text link
    We discuss the relationship between bosonic stimulation, density fluctuations, and matter wave gratings. It is shown that enhanced stimulated scattering, matter wave amplification and atomic four-wave mixing are in principle possible for fermionic or non-degenerate samples if they are prepared in a cooperative state. In practice, there are limitations by short coherence times.Comment: 5 pages, 1 figure

    Synthesis and Characterization of Anti-HER2 Antibody Conjugated CdSe/CdZnS Quantum Dots for Fluorescence Imaging of Breast Cancer Cells

    Get PDF
    The early detection of HER2 (human epidermal growth factor receptor 2) status in breast cancer patients is very important for the effective implementation of anti-HER2 antibody therapy. Recently, HER2 detections using antibody conjugated quantum dots (QDs) have attracted much attention. QDs are a new class of fluorescent materials that have superior properties such as high brightness, high resistance to photo-bleaching, and multi-colored emission by a single-light source excitation. In this study, we synthesized three types of anti-HER2 antibody conjugated QDs (HER2Ab-QDs) using different coupling agents (EDC/sulfo-NHS, iminothiolane/sulfo-SMCC, and sulfo-SMCC). As water-soluble QDs for the conjugation of antibody, we used glutathione coated CdSe/CdZnS QDs (GSH-QDs) with fluorescence quantum yields of 0.23∼0.39 in aqueous solution. Dispersibility, hydrodynamic size, and apparent molecular weights of the GSH-QDs and HER2Ab-QDs were characterized by using dynamic light scattering, fluorescence correlation spectroscopy, atomic force microscope, and size-exclusion HPLC. Fluorescence imaging of HER2 overexpressing cells (KPL-4 human breast cancer cell line) was performed by using HER2Ab-QDs as fluorescent probes. We found that the HER2Ab-QD prepared by using SMCC coupling with partially reduced antibody is a most effective probe for the detection of HER2 expression in KPL-4 cells. We have also studied the size dependency of HER2Ab-QDs (with green, orange, and red emission) on the fluorescence image of KPL-4 cells

    Inhibitor of protein synthesis phase shifts a circadian pacemaker in mammalian SCN

    Get PDF
    The suprachiasmatic nucleus (SCN) of the hypothalamus contains a circadian pacemaker that regulates many circadian rhythms in mammals. Experimental work in microorganisms and invertebrates suggests that protein synthesis is required for the function of the circadian oscillator, and recent experiments in golden hamsters suggest an acute inhibition of protein synthesis can induce phase shifts in a mammalian circadian pacemaker. To determine whether protein synthesis in the SCN region is involved in the generation of circadian rhythms in mammals, a protein synthesis inhibitor, anisomycin, was microinjected into the SCN region, and the effect on the circadian rhythm of locomotor activity of hamsters was measured. A single injection of anisomycin into the SCN region induced phase shifts in the circadian activity rhythm that varied systematically as a function of the phase of injection within the circadian cycle. These results suggest that protein synthesis may be involved in the generation of circadian rhythms in mammals and that the anatomic site of action of anisomycin is within the hypothalamic suprachiasmatic region

    Coinfection of Viral Agents in Korean Children with Acute Watery Diarrhea

    Get PDF
    Currently, there are a few reports on viral coinfection that causes an acute watery diarrhea in Korean children. So, to evaluate the features of coinfectious viral agents in children with acute watery diarrhea, we enrolled 155 children with acute watery diarrhea from July 2005 to June 2006. Fecal samples were collected and evaluated for various viral infections such as rotavirus, norovirus, adenovirus and astrovirus. The mean (±standard deviation) age of the children was 2.71±2.37 yr. The detection rate of viral agents was most common in children between the ages of 1 and 3 yr. Rotavirus was detected in 63 children (41.3%), norovirus in 56 (36.2%), adenovirus in 11 (7.1%), and astrovirus in 1 (0.6%). Regarding rotavirus, there were 38 (60.3%) cases with monoinfection and 25 (39.7%) with coinfection. For norovirus, there were 33 (58.9%) cases with monoinfection and 23 (41.1%) with coinfection. Coinfection with rotavirus and norovirus was most common, and occurred in 20/155 cases (12.9%) including coinfection with adenovirus. So, rotavirus and norovirus were the most common coinfectious viral agents in our study population with acute watery diarrhea

    Validating the Time and Change test to screen for dementia in elderly Koreans

    Get PDF
    BACKGROUND: We assessed the applicability of the T&C test as an accurate and convenient means to screen for dementia in primary care and community settings. METHODS: The study group comprised 59 patients and 405 community participants, all of who were aged 65 years and over. The time component of the T&C test evaluated the ability of a subject to comprehend clock hands that indicated a time of 11:10, while the change component of the T&C test evaluated the ability of a subject to make 1,000 Won from a group of coins with smaller denominations (one 500, seven 100, and seven 50 Won coins). RESULTS: The T&C test had a sensitivity and specificity of 73.0 and 90.9%, respectively, and positive and negative predictive values of 93.1, and 66.7%, respectively. The test-retest and interobserver agreement rates were both 95% (κ = 0.91) (time interval, 24 hours). The association between the T&C test and K-MMSE test was modest, while significant (r = 0.422, p < 0.001). The T&C test scores were not influenced by educational status. CONCLUSIONS: We conclude that the T&C test is useful as supplemental testing of important domains (e.g., calculation, conceptualization, visuospatial) to traditional measures such as the MMSE. However, because T&C test is simple, rapid, and easy to use, it can be applied conveniently to elderly subjects by non-specialist personnel who receive training

    Basic Atomic Physics

    Get PDF
    Contains reports on five research projects.National Science Foundation Grant PHY 96-024740National Science Foundation Grant PHY 92-21489U.S. Navy - Office of Naval Research Contract N00014-96-1-0484Joint Services Electronics Program Grant DAAHO4-95-1-0038National Science Foundation Grant PHY95-14795U.S. Army Research Office Contract DAAHO4-94-G-0170U.S. Army Research Office Contract DAAG55-97-1-0236U.S. Army Research Office Contract DAAH04-95-1-0533U.S. Navy - Office of Naval Research Contract N00014-96-1-0432National Science Foundation Contract PHY92-22768David and Lucile Packard Foundation Grant 96-5158National Science Foundation Grant PHY 95-01984U.S. Army Research OfficeU.S. Navy - Office of Naval Research Contract N00014-96-1-0485AASERT N00014-94-1-080

    Quantitative Analysis of Phase Wave of Gene Expression in the Mammalian Central Circadian Clock Network

    Get PDF
    BACKGROUND: The suprachiasmatic nucleus (SCN), the master circadian clock, is a heterogeneous oscillator network, yet displays a robust synchronization dynamics. Recent single-cell bioluminescent imaging revealed temporal gradients in circadian clock gene expression in the SCN ex vivo. However, due to technical difficulty in biological approaches to elucidate the entire network structure of the SCN, characteristics of the gradient, which we refer to as phase wave, remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: We implemented new approaches, i.e., quantitative analysis and model simulation to characterize the phase waves in Per2::Luciferase clock reporter gene expression of the rat SCN slice. Our quantitative study demonstrated not only a high degree of synchronization between the neurons and regular occurrence of the phase wave propagation, but also a significant amount of phase fluctuations contained in the wave. In addition, our simulations based on local coupling model suggest that the intercellular coupling strength estimated by the model simulations is significantly higher than the critical value for generating the phase waves. Model simulations also suggest that heterogeneity of the SCN neurons is one of the main factors causing the phase wave fluctuations. Furthermore, robustness of the SCN network against dynamical noise and variation of the natural frequencies inherent in these neurons was quantitatively assessed. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this is the first quantitative evaluation of the phase wave and further characterization of the SCN neuronal network features generating the wave i.e., intercellular synchrony, phase fluctuation, strong local coupling, heterogeneous periodicity and robustness. Our present study provides an approach, which will lead to a comprehensive understanding of mechanistic and/or biological significance of the phase wave in the central circadian oscillatory system

    Basic Atomic Physics

    Get PDF
    Contains reports on five research projects.Joint Services Electronics Program Grant DAAH04-95-1-0038National Science Foundation Grant PHY 92-21489U.S. Navy - Office of Naval Research Grant N00014-90-J-1322National Science Foundation Grant PHY95-14795Charles S. Draper Laboratory Contract DL-H-484775U.S. Army Research Office Contract DAAH04-94-G-0170U.S. Army Research Office Contract DAAH04-95-1-0533U.S. Navy - Office of Naval Research Contract N00014-89-J-1207U.S. Navy - Office of Naval Research Contract N000014-96-1-0432David and Lucile Packard Foundation Grant 96-5158National Science Foundation Grant PHY95-01984U.S. Army - Office of ResearchU.S. Navy - Office of Naval Research Contract N00014-96-1-0485U.S. Navy - Office of Naval Research AASERT N00014-94-1-080

    Regulation of Cyclooxygenase-2 Expression by Heat: A Novel Aspect of Heat Shock Factor 1 Function in Human Cells

    Get PDF
    The heat-shock response, a fundamental defense mechanism against proteotoxic stress, is regulated by a family of heat-shock transcription factors (HSF). In humans HSF1 is considered the central regulator of heat-induced transcriptional responses. The main targets for HSF1 are specific promoter elements (HSE) located upstream of heat-shock genes encoding cytoprotective heat-shock proteins (HSP) with chaperone function. In addition to its cytoprotective function, HSF1 was recently hypothesized to play a more complex role, regulating the expression of non-HSP genes; however, the non-canonical role of HSF1 is still poorly understood. Herein we report that heat-stress promotes the expression of cyclooxygenase-2 (COX-2), a key regulator of inflammation controlling prostanoid and thromboxane synthesis, resulting in the production of high levels of prostaglandin-E2 in human cells. We show that heat-induced COX-2 expression is regulated at the transcriptional level via HSF1-mediated signaling and identify, by in-vitro reporter gene activity assay and deletion-mutant constructs analysis, the COX-2 heat-responsive promoter region and a new distal cis-acting HSE located at position −2495 from the transcription start site. As shown by ChIP analysis, HSF1 is recruited to the COX-2 promoter rapidly after heat treatment; by using shRNA-mediated HSF1 suppression and HSE-deletion from the COX-2 promoter, we demonstrate that HSF1 plays a central role in the transcriptional control of COX-2 by heat. Finally, COX-2 transcription is also induced at febrile temperatures in endothelial cells, suggesting that HSF1-dependent COX-2 expression could contribute to increasing blood prostaglandin levels during fever. The results identify COX-2 as a human non-classical heat-responsive gene, unveiling a new aspect of HSF1 function
    corecore