1,834 research outputs found

    Tissue factor in antiphospholipid antibody-induced pregnancy loss:a pro-inflammatory molecule

    Get PDF
    Fetal loss in patients with antiphospholipid antibodies (aPL) has been ascribed to thrombosis of placental vessels. However, we have shown that inflammation, specifically complement activation with generation of the anaphylotoxin C5a, is an essential mediator of fetal injury. We have analysed the role of tissue factor (TF) in a mouse model of aPL-induced pregnancy loss. TF is the major cellular activator of the coagulation cascade but also has cell signaling activity. Mice that received aPL-IgG showed strong TF staining throughout the decidua and on embryonic debris. This TF staining was not associated with either fibrin staining or thrombi in deciduas. The absence of fibrin deposition and thrombi suggests that TF-dependent activation of coagulation does not mediate aPL-induced pregnancy loss. We found that either blockade of TF with a monoclonal antibody in wild type mice or a genetic reduction of TF prevented aPL-induced inflammation and pregnancy loss indicated a pathogenic role for TF in aPL-induced pregnancy complications. In response to aPL-generated C5a, neutrophils express TF potentiating inflammation in the deciduas and leading to miscarriages. Importantly, we showed that TF in myeloid cells, but not fetal-derived cells (trophoblasts), was associated with fetal injury, suggesting that the site for pathologic TF expression is neutrophils. We found that TF expression in neutrophils contributes to respiratory burst and subsequent trophoblast injury and pregnancy loss induced by aPL. The identification of TF, acting as an important pro-inflammatory mediator in aPL-induced fetal injury, provides a new target for therapy to prevent pregnancy loss in the aPL syndrome

    From on-road to off : transfer learning within a deep convolutional neural network for segmentation and classification of off-road scenes.

    Get PDF
    Real-time road-scene understanding is a challenging computer vision task with recent advances in convolutional neural networks (CNN) achieving results that notably surpass prior traditional feature driven approaches. Here, we take an existing CNN architecture, pre-trained for urban road-scene understanding, and retrain it towards the task of classifying off-road scenes, assessing the network performance within the training cycle. Within the paradigm of transfer learning we analyse the effects on CNN classification, by training and assessing varying levels of prior training on varying sub-sets of our off-road training data. For each of these configurations, we evaluate the network at multiple points during its training cycle, allowing us to analyse in depth exactly how the training process is affected by these variations. Finally, we compare this CNN to a more traditional approach using a feature-driven Support Vector Machine (SVM) classifier and demonstrate state-of-the-art results in this particularly challenging problem of off-road scene understanding

    pH Biosensing by PI4P Regulates Cargo Sorting at the TGN

    Get PDF
    Phosphoinositides, diacylglycerolpyrophosphate, ceramide-1-phosphate, and phosphatidic acid belong to a unique class of membrane signaling lipids that contain phosphomonoesters in their headgroups having pKa values in the physiological range. The phosphomonoester headgroup of phosphatidic acid enables this lipid to act as a pH biosensor as changes in its protonation state with intracellular pH regulate binding to effector proteins. Here, we demonstrate that binding of pleckstrin homology (PH) domains to phosphatidylinositol 4-phosphate (PI4P) in the yeast trans-Golgi network (TGN) is dependent on intracellular pH, indicating PI4P is a pH biosensor. pH biosensing by TGN PI4P in response to nutrient availability governs protein sorting at the TGN, likely by regulating sterol transfer to the TGN by Osh1, a member of the conserved oxysterol-binding protein (OSBP) family of lipid transfer proteins. Thus, pH biosensing by TGN PI4P allows for direct metabolic regulation of protein trafficking and cell growth

    Realization of a single Josephson junction for Bose-Einstein condensates

    Full text link
    We report on the realization of a double-well potential for Rubidium-87 Bose-Einstein condensates. The experimental setup allows the investigation of two different dynamical phenomena known for this system - Josephson oscillations and self-trapping. We give a detailed discussion of the experimental setup and the methods used for calibrating the relevant parameters. We compare our experimental findings with the predictions of an extended two-mode model and find quantitative agreement

    Persistence of anticancer activity in berry extracts after simulated gastrointestinal digestion and colonic fermentation

    Get PDF
    Fruit and vegetable consumption is associated at the population level with a protective effect against colorectal cancer. Phenolic compounds, especially abundant in berries, are of interest due to their putative anticancer activity. After consumption, however, phenolic compounds are subject to digestive conditions within the gastrointestinal tract that alter their structures and potentially their function. However, the majority of phenolic compounds are not efficiently absorbed in the small intestine and a substantial portion pass into the colon. We characterized berry extracts (raspberries, strawberries, blackcurrants) produced by in vitro-simulated upper intestinal tract digestion and subsequent fecal fermentation. These extracts and selected individual colonic metabolites were then evaluated for their putative anticancer activities using in vitro models of colorectal cancer, representing the key stages of initiation, promotion and invasion. Over a physiologically-relevant dose range (0–50 µg/ml gallic acid equivalents), the digested and fermented extracts demonstrated significant anti-genotoxic, anti-mutagenic and anti-invasive activity on colonocytes. This work indicates that phenolic compounds from berries undergo considerable structural modifications during their passage through the gastrointestinal tract but their breakdown products and metabolites retain biological activity and can modulate cellular processes associated with colon cancer

    Secure Mobile Agent for Telemedicine Based on P2P Networks

    Get PDF

    Rationing tests for drug-resistant tuberculosis - who are we prepared to miss?

    Get PDF
    BACKGROUND: Early identification of patients with drug-resistant tuberculosis (DR-TB) increases the likelihood of treatment success and interrupts transmission. Resource-constrained settings use risk profiling to ration the use of drug susceptibility testing (DST). Nevertheless, no studies have yet quantified how many patients with DR-TB this strategy will miss. METHODS: A total of 1,545 subjects, who presented to Lima health centres with possible TB symptoms, completed a clinic-epidemiological questionnaire and provided sputum samples for TB culture and DST. The proportion of drug resistance in this population was calculated and the data was analysed to demonstrate the effect of rationing tests to patients with multidrug-resistant TB (MDR-TB) risk factors on the number of tests needed and corresponding proportion of missed patients with DR-TB. RESULTS: Overall, 147/1,545 (9.5%) subjects had culture-positive TB, of which 32 (21.8%) had DR-TB (MDR, 13.6%; isoniazid mono-resistant, 7.5%; rifampicin mono-resistant, 0.7%). A total of 553 subjects (35.8%) reported one or more MDR-TB risk factors; of these, 506 (91.5%; 95% CI, 88.9-93.7%) did not have TB, 32/553 (5.8%; 95% CI, 3.4-8.1%) had drug-susceptible TB, and only 15/553 (2.7%; 95% CI, 1.5-4.4%) had DR-TB. Rationing DST to those with an MDR-TB risk factor would have missed more than half of the DR-TB population (17/32, 53.2%; 95% CI, 34.7-70.9). CONCLUSIONS: Rationing DST based on known MDR-TB risk factors misses an unacceptable proportion of patients with drug-resistance in settings with ongoing DR-TB transmission. Investment in diagnostic services to allow universal DST for people with presumptive TB should be a high priority

    Angiotensin converting enzyme inhibitor therapy in children with Alport syndrome: effect on urinary albumin, TGF-β, and nitrite excretion

    Get PDF
    BACKGROUND: Angiotensin converting enzyme inhibitors are routinely prescribed to patients with chronic kidney disease because of their known renoprotective effects. We evaluated the effect of short-term therapy with the angiotensin converting enzyme inhibitor, enalapril, in early Alport syndrome, defined as disease duration less than 10 years and a normal glomerular filtration rate. METHODS: 11 children with early Alport syndrome were investigated. Two consecutive early morning urine specimens were collected at the start of the study for measurement of urinary creatinine, total protein, albumin, TGF-β, and nitrite excretion. Patients were treated with enalapril, ≅ 0.2 mg/kg/day, once a day for 14 days. Two early morning urine specimens were collected on days 13 and 14 of enalapril treatment and two weeks later for measurement of urinary creatinine, total protein, albumin, TGF-β, and nitrite excretion. RESULTS: Prior to treatment, urinary excretion of transforming growth factor-β and nitrite, the major metabolite of nitric oxide, was within normal limits in all patients. Administration of enalapril for 2 weeks did not alter urinary albumin, transforming growth factor-β, or nitrite excretion. CONCLUSION: These findings suggest that early Alport syndrome represents a disease involving exclusively intrinsic glomerular barrier dysfunction. At this stage of the illness, there is no evidence of angiotensin II-mediated proteinuria or increased production of transforming growth factor-β and, therefore, routine treatment with an angiotensin converting enzyme inhibitor may not be warranted

    Cactus pear: a natural product in cancer chemoprevention

    Get PDF
    BACKGROUND: Cancer chemoprevention is a new approach in cancer prevention, in which chemical agents are used to prevent cancer in normal and/or high-risk populations. Although chemoprevention has shown promise in some epithelial cancers, currently available preventive agents are limited and the agents are costly, generally with side effects. Natural products, such as grape seed, green tea, and certain herbs have demonstrated anti-cancer effects. To find a natural product that can be used in chemoprevention of cancer, we tested Arizona cactus fruit solution, the aqueous extracts of cactus pear, for its anti-cancer effects in cultured cells and in an animal model. METHOD: Aqueous extracts of cactus pear were used to treat immortalized ovarian and cervical epithelial cells, as well as ovarian, cervical, and bladder cancer cells. Aqueous extracts of cactus pear were used at six concentrations (0, 0.5, 1, 5, 10 or 25%) to treat cells for 1, 3, or 5 days. Growth inhibition, apoptosis induction, and cell cycle changes were analyzed in the cultured cells; the suppression of tumor growth in nude mice was evaluated and compared with the effect of a synthetic retinoid N-(4-hydroxyphernyl) retinamide (4-HPR), which is currently used as a chemoprevention agent. Immunohistochemistry staining of tissue samples from animal tumors was performed to examine the gene expression. RESULTS: Cells exposed to cactus pear extracts had a significant increase in apoptosis and growth inhibition in both immortalized epithelial cells and cancer cells in a dose- and time-dependent manner. It also affected cell cycle of cancer cells by increasing G1 and decreasing G2 and S phases. Both 4-HPR and cactus pear extracts significantly suppressed tumor growth in nude mice, increased annexin IV expression, and decreased VEGF expression. CONCLUSION: Arizona cactus pear extracts effectively inhibited cell growth in several different immortalized and cancer cell cultures, suppressed tumor growth in nude mice, and modulated expression of tumor-related genes. These effects were comparable with those caused by a synthetic retinoid currently used in chemoprevention trials. The mechanism of the anti-cancer effects of cactus pear extracts needs to be further studied

    Cyclic Behavior of HPFRCC Coupling Beams with Bundled Diagonal Bars

    Get PDF
    Coupled shear walls are efficient in resisting lateral forces induced by winds and earthquakes. However, it is difficult to construct coupled shear walls particularly because current design codes require complex reinforcing details within coupling beams. The objective of this study was to develop simple reinforcement details for diagonally reinforced coupling beams; reducing transverse steel by use of high-performance fiber-reinforced cementitious composites (HPFRCCs) and bundling diagonal bars are explored. Four coupling beam specimens with length-to-depth aspect ratios of 2.0 or 3.5 were fabricated and tested under cyclic lateral displacements. The test results revealed that HPFRCC coupling beams with bundled diagonal bars and widely spaced transverse reinforcement (one-half the amount of reinforcement required by current seismic codes) exhibited excellent seismic performance compared with ordinary concrete coupling beams having code-required distributed diagonal reinforcement and transverse reinforcement
    corecore