12 research outputs found

    Integrative analysis of DNA methylation suggests down-regulation of oncogenic pathways and reduced somatic mutation rates in survival outliers of glioblastoma

    Get PDF
    The study of survival outliers of glioblastoma can provide important clues on gliomagenesis as well as on the ways to alter clinical course of this almost uniformly lethal cancer type. However, there has been little consensus on genetic and epigenetic signatures of the long-term survival outliers of glioblastoma. Although the two classical molecular markers of glioblastoma including isocitrate dehydrogenase 1 or 2 (IDH1/2) mutation and O6-methylguanine DNA methyltransferase (MGMT) promoter methylation are associated with overall survival rate of glioblastoma patients, they are not specific to the survival outliers. In this study, we compared the two groups of survival outliers of glioblastoma with IDH wild-type, consisting of the glioblastoma patients who lived longer than 3 years (n = 17) and the patients who lived less than 1 year (n = 12) in terms of genome-wide DNA methylation profile. Statistical analyses were performed to identify differentially methylated sites between the two groups. Functional implication of DNA methylation patterns specific to long-term survivors of glioblastoma were investigated by comprehensive enrichment analyses with genomic and epigenomic features. We found that the genome of long-term survivors of glioblastoma is differentially methylated relative to short-term survivor patients depending on CpG density: hypermethylation near CpG islands (CGIs) and hypomethylation far from CGIs. Interestingly, these two patterns are associated with distinct oncogenic aspects in gliomagenesis. In the long-term survival glioblastoma-specific sites distant from CGI, somatic mutations of glioblastoma are enriched with higher DNA methylation, suggesting that the hypomethylation in long-term survival glioblastoma can contribute to reduce the rate of somatic mutation. On the other hand, the hypermethylation near CGIs associates with transcriptional downregulation of genes involved in cancer progression pathways. Using independent cohorts of IDH1/2- wild type glioblastoma, we also showed that these two patterns of DNA methylation can be used as molecular markers of long-term survival glioblastoma. Our results provide extended understanding of DNA methylation, especially of DNA hypomethylation, in cancer genome and reveal clinical importance of DNA methylation pattern as prognostic markers of glioblastoma.This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science & ICT (NRF-2018M3A9H3021707). in Korea, and the Seoul National University Hospital Research Fund (3020180010)

    The telomere maintenance mechanism spectrum and its dynamics in gliomas

    Get PDF
    Background : The activation of the telomere maintenance mechanism (TMM) is one of the critical drivers of cancer cell immortality. In gliomas, TERT expression and TERT promoter mutation are considered to reliably indicate telomerase activation, while ATRX mutation and/or loss indicates an alternative lengthening of telomeres (ALT). However, these relationships have not been extensively validated in tumor tissues. Methods : Telomerase repeated amplification protocol (TRAP) and C-circle assays were used to profile and characterize the TMM cross-sectionally (n = 412) and temporally (n = 133) across glioma samples. WES, RNA-seq, and NanoString analyses were performed to identify and validate the genetic characteristics of the TMM groups. Results : We show through the direct measurement of telomerase activity and ALT in a large set of glioma samples that the TMM in glioma cannot be defined solely by the combination of telomerase activity and ALT, regardless of TERT expression, TERT promoter mutation, and ATRX loss. Moreover, we observed that a considerable proportion of gliomas lacked both telomerase activity and ALT. This telomerase activation-negative and ALT negative group exhibited evidence of slow growth potential. By analyzing a set of longitudinal samples from a separate cohort of glioma patients, we discovered that the TMM is not fixed and can change with glioma progression. Conclusions : This study suggests that the TMM is dynamic and reflects the plasticity and oncogenicity of tumor cells. Direct measurement of telomerase enzyme activity and evidence of ALT should be considered when defining TMM. An accurate understanding of the TMM in glioma is expected to provide important information for establishing cancer management strategies.This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF), funded by the Ministry of Science & ICT (NRF-2018M3A9H3021707), and the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI21C0239)

    Effects of Pravastatin on Type 1 Diabetic Rat Heart with or without Blood Glycemic Control

    No full text
    Although statins have been suggested to attenuate the progression of diabetic cardiomyopathy, its effect without glycemic control remains unclear. Therefore, we evaluated the effect of pravastatin on diabetic rat hearts according to glycemic control. Rats were randomly divided into five groups: control (C), diabetes (D), diabetes with insulin (I), diabetes with pravastatin (P), and diabetes with insulin and pravastatin (IP). Eight weeks after allocated treatments, the heart was extracted and analyzed following echocardiography. Cardiac fibrosis was measured using Masson’s trichrome stain. Cardiac expression of collagen I/III, matrix metalloproteinase (MMP)-2, MMP-9, and angiotensin-converting enzyme (ACE)/ACE2 was evaluated by immunohistochemistry and/or Western blot. Enzyme-linked immunosorbent assay was used for measuring reactive oxygen species (ROS). Diabetic groups without glycemic control (D and P) showed significantly impaired diastolic function and increased levels of cardiac fibrosis, collagen I/III, MMP-2, MMP-9, and ROS production. However, there were little significant differences in the outcomes among the control and two glucose-controlled diabetic groups (I and IP). Groups C and IP showed more preserved ACE2 and lower ACE expressions than the other groups did (D, I, and P). Our study suggested glycemic control would be more important to attenuate the progression of diabetic cardiomyopathy than pravastatin medication

    Erratum: Author Correction. Management of ovarian cancer patients in affected areas during COVID-19 pandemic: Japan and Korea

    No full text

    Mammalian Cell Membrane Hybrid Polymersomes for mRNA Delivery

    No full text
    Cell membranes are structures essential to the cell function and adaptation. Recent studies have targeted cell membranes to identify their protective and interactive properties. Leveraging these attributes of cellular membranes and their application to vaccine delivery is gaining increasing prominence. This study aimed to fuse synthetic polymeric nanoparticles with cell membranes to develop cell membrane hybrid polymersomes (HyPSomes) for enhanced vaccine delivery. We designed a platform to hybridize cell membranes with methoxy-poly(ethylene glycol)-block-polylactic acid nanoparticles by using the properties of both components. The formed HyPSomes were optimized by using dynamic light scattering, transmission electron microscopy, and Förster resonance energy transfer, and their stability was confirmed. The synthesized HyPSomes replicated the antigenic surface of the source cells and possessed the stability and efficacy of synthetic nanoparticles. These HyPSomes demonstrated enhanced cellular uptake and translation efficiency and facilitated endosome escape. HyPSomes showed outstanding capabilities for the delivery of foreign mRNAs to antigen-presenting cells. HyPSomes may serve as vaccine delivery systems by bridging the gap between synthetic and natural systems. These systems could be used in other contexts, e.g., diagnostics and drug delivery

    Targeting progesterone signaling prevents metastatic ovarian cancer

    No full text
    Effective cancer prevention requires the discovery and intervention of a factor critical to cancer development. Here we show that ovarian progesterone is a crucial endogenous factor inducing the development of primary tumors progressing to metastatic ovarian cancer in a mouse model of high-grade serous carcinoma (HGSC), the most common and deadliest ovarian cancer type. Blocking progesterone signaling by the pharmacologic inhibitor mifepristone or by genetic deletion of the progesterone receptor (PR) effectively suppressed HGSC development and its peritoneal metastases. Strikingly, mifepristone treatment profoundly improved mouse survival (∼18 human years). Hence, targeting progesterone/PR signaling could offer an effective chemopreventive strategy, particularly in high-risk populations of women carrying a deleterious mutation in the BRCA gene

    The telomere maintenance mechanism spectrum and its dynamics in gliomas

    Get PDF
    Background The activation of the telomere maintenance mechanism (TMM) is one of the critical drivers of cancer cell immortality. In gliomas, TERT expression and TERT promoter mutation are considered to reliably indicate telomerase activation, while ATRX mutation and/or loss indicates an alternative lengthening of telomeres (ALT). However, these relationships have not been extensively validated in tumor tissues. Methods Telomerase repeated amplification protocol (TRAP) and C-circle assays were used to profile and characterize the TMM cross-sectionally (n = 412) and temporally (n = 133) across glioma samples. WES, RNA-seq, and NanoString analyses were performed to identify and validate the genetic characteristics of the TMM groups. Results We show through the direct measurement of telomerase activity and ALT in a large set of glioma samples that the TMM in glioma cannot be defined solely by the combination of telomerase activity and ALT, regardless of TERT expression, TERT promoter mutation, and ATRX loss. Moreover, we observed that a considerable proportion of gliomas lacked both telomerase activity and ALT. This telomerase activation-negative and ALT negative group exhibited evidence of slow growth potential. By analyzing a set of longitudinal samples from a separate cohort of glioma patients, we discovered that the TMM is not fixed and can change with glioma progression. Conclusions This study suggests that the TMM is dynamic and reflects the plasticity and oncogenicity of tumor cells. Direct measurement of telomerase enzyme activity and evidence of ALT should be considered when defining TMM. An accurate understanding of the TMM in glioma is expected to provide important information for establishing cancer management strategies.N
    corecore