3,799 research outputs found

    Periodic shedding of vortex dipoles from a moving penetrable obstacle in a Bose-Einstein condensate

    Full text link
    We investigate vortex shedding from a moving penetrable obstacle in a highly oblate Bose-Einstein condensate. The penetrable obstacle is formed by a repulsive Gaussian laser beam that has the potential barrier height lower than the chemical potential of the condensate. The moving obstacle periodically generates vortex dipoles and the vortex shedding frequency fvf_v linearly increases with the obstacle velocity vv as fv=a(vβˆ’vc)f_v=a(v-v_c), where vcv_c is a critical velocity. Based on periodic shedding behavior, we demonstrate deterministic generation of a single vortex dipole by applying a short linear sweep of a laser beam. This method will allow further controlled vortex experiments such as dipole-dipole collisions.Comment: 6 pages, 7 figure

    Optical pumping effect in absorption imaging of F=1 atomic gases

    Full text link
    We report our study of the optical pumping effect in absorption imaging of 23^{23}Na atoms in the F=1F=1 hyperfine spin states. Solving a set of rate equations for the spin populations in the presence of a probe beam, we obtain an analytic expression for the optical signal of the F=1F=1 absorption imaging. Furthermore, we verify the result by measuring the absorption spectra of 23^{23}Na Bose-Einstein condensates prepared in various spin states with different probe beam pulse durations. The analytic result can be used in the quantitative analysis of F=1F=1 spinor condensate imaging and readily applied to other alkali atoms with I=3/2I=3/2 nuclear spin such as 87^{87}Rb.Comment: 6 pages, 4 figure

    Collisional Dynamics of Half-Quantum Vortices in a Spinor Bose-Einstein Condensate

    Full text link
    We present an experimental study on the interaction and dynamics of half-quantum vortices (HQVs) in an antiferromagnetic spinor Bose-Einstein condensate. By exploiting the orbit motion of a vortex dipole in a trapped condensate, we perform a collision experiment of two HQV pairs, and observe that the scattering motions of the HQVs is consistent with the short-range vortex interaction that arises from nonsingular magnetized vortex cores. We also investigate the relaxation dynamics of turbulent condensates containing many HQVs, and demonstrate that spin wave excitations are generated by the collisional motions of the HQVs. The short-range vortex interaction and the HQV-magnon coupling represent two characteristics of the HQV dynamics in the spinor superfluid.Comment: 7 pages, 6 figure

    Observation of wall-vortex composite defects in a spinor Bose-Einstein condensate

    Get PDF
    We report the observation of spin domain walls bounded by half-quantum vortices (HQVs) in a spin-1 Bose-Einstein condensate with antiferromagnetic interactions. A spinor condensate is initially prepared in the easy-plane polar phase, and then, suddenly quenched into the easy-axis polar phase. Domain walls are created via the spontaneous Z2\mathbb{Z}_2 symmetry breaking in the phase transition and the walls dynamically split into composite defects due to snake instability. The end points of the defects are identified as HQVs for the polar order parameter and the mass supercurrent in their proximity is demonstrated using Bragg scattering. In a strong quench regime, we observe that singly charged quantum vortices are formed with the relaxation of free wall-vortex composite defects. Our results demonstrate a nucleation mechanism for composite defects via phase transition dynamics.Comment: 10 pages, 11 figures, reference update
    • …
    corecore