1,447 research outputs found

    Simultaneous Determination of Seven Constituents in Herbal Prescription Jaeumganghwa-Tang Using HPLC-PDA

    Get PDF
    A simple and accurate high-performance liquid chromatographic method was applied to the quantitative analysis of seven components of the traditional herbal prescription Jaeumganghwa-tang (JGT), including 5-hydroxymethyl-2-furaldehyde, albiflorin, paeoniflorin, liquiritin, ferulic acid, nodakenin, and glycyrrhizin. All seven compounds were separated in less than 40 min on a Gemini C18 column at 40°C by gradient elution using 1.0% (v/v) aqueous acetic acid and acetonitrile containing 1.0% (v/v) acetic acid as mobile phase. The flow rate was 1.0 mL/min and the detector was a photodiode array (PDA) set at 230 nm, 254 nm, 280 nm, and 330 nm. The calibration curves showed good linearity (r2 > 0.9998) in different concentration ranges. The recovery of each component was in the range of 91.47–102.62%, with relative standard deviations (RSDs, %) less than 4.5%. The RSDs (%) for intra- and interday precision were 0.06–2.85% and 0.06–2.83%, respectively. The concentrations of the seven components in JGT were in the range 0.74–5.48 mg/g

    Effects of polarization and permittivity gradients and other parameters on the anomalous vertical shift behavior of graded ferroelectric thin films

    Get PDF
    Author name used in this publication: Y. ZhouAuthor name used in this publication: C. H. LamAuthor name used in this publication: F. G. Shin2005-2006 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Mechanisms of imprint effect on ferroelectric thin films

    Get PDF
    Author name used in this publication: Y. ZhouAuthor name used in this publication: C. H. LamAuthor name used in this publication: F. G. Shin2005-2006 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Time-dependent space-charge-limited conduction as a possible origin of the polarization offsets observed in compositionally graded ferroelectric films

    Get PDF
    Author name used in this publication: C. H. LamAuthor name used in this publication: F. G. Shin2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Deep Neural Networks - A Brief History

    Full text link
    Introduction to deep neural networks and their history.Comment: 14 pages, 14 figure

    Soil-Structure Interaction on the Response of Jacket Type Offshore Wind Turbine

    Get PDF
    Jacket structures are still at the early stage of their development for use in the offshore wind industry. The aim of this paper is to investigate the effect of the soil-structure interaction on the response of an offshore wind turbine with a jacket-type foundation. For this purpose, two different models of flexible foundation-the p-y model and the p-y model considering pile groups effect-are employed to compare the dynamic responses with the fixed-base model. The modal analysis and the coupled dynamic analysis are carried out under deterministic and stochastic conditions. The influence of the soil-structure interaction on the response of the jacket foundation predicts that the flexible foundation model is necessary to estimate the loads of the offshore wind turbine structure well. It is suggested that during fatigue analysis the pile group effect should be considered for the jacket foundation.None1174Ysciescopu

    Symmetry energy of dense matter in holographic QCD

    Full text link
    We study the nuclear symmetry energy of dense matter using holographic QCD. To this end, we consider two flavor branes with equal quark masses in a D4/D6/D6 model. We find that at all densities the symmetry energy monotonically increases. At small densities, it exhibits a power law behavior with the density, Esymρ1/2E_{\rm sym} \sim \rho^{1/2}.Comment: 9 pages, 3 figure

    The ground state of Sr3Ru2O7 revisited; Fermi liquid close to a ferromagnetic instability

    Full text link
    We show that single-crystalline Sr3Ru2O7 grown by a floating-zone technique is an isotropic paramagnet and a quasi-two dimensional metal as spin-triplet superconducting Sr2RuO4 is. The ground state is Fermi liquid with very low residual resistivity (3 micro ohm cm for in-plane currents) and a nearly ferromagnetic metal with the largest Wilson ratio Rw>10 among paramagnets so far. This contrasts with the ferromagnetic order at Tc=104 K reported on single crystals grown by a flux method [Cao et al., Phys. Rev. B 55, R672 (1997)]. We have also found a dramatic changeover from paramagnetism to ferromagnetism under applied pressure. This suggests the existence of a substantial ferromagnetic instability on the verge of a quantum phase transition in the Fermi liquid state.Comment: 5 pages, 4 figures, to be published in Phys. Rev. B : Rapid co

    Effects of Finish Cooling Temperature on Tensile Properties After Thermal Aging of Strain-Based API X60 Linepipe Steels

    Get PDF
    Two types of strain-based American Petroleum Institute (API) X60 linepipe steels were fabricated at two finish cooling temperatures, 673 K and 723 K (400 A degrees C and 450 A degrees C), and the effects of the finish cooling temperatures on the tensile properties after thermal aging were investigated. The strain-based API X60 linepipe steels consisted mainly of polygonal ferrite (PF) or quasi-polygonal ferrite and the volume fraction of acicular ferrite increased with the increasing finish cooling temperature. In contrast, the volume fractions of bainitic ferrite (BF) and secondary phases decreased. The tensile properties before and after thermal aging at 473 K and 523 K (200 A degrees C and 250 A degrees C) were measured. The yield strength, ultimate tensile strength, and yield ratio increased with the increasing thermal aging temperature. The strain hardening rate in the steel fabricated at the higher finish cooling temperature decreased rapidly after thermal aging, probably due to the Cottrell atmosphere, whereas the strain hardening rate in the steel fabricated at the lower finish cooling temperature changed slightly after thermal aging. The uniform elongation and total elongation decreased with increasing thermal aging temperature, probably due to the interactions between carbon atoms and dislocations. The uniform elongation decreased rapidly with the decreasing volume fractions of BF and martensite and secondary phases. The yield ratio increased with the increasing thermal aging temperature, whereas the strain hardening exponent decreased. The strain hardening exponent of PL steel decreased rapidly after thermal aging because of the large number of mobile dislocations between PF and BF or martensite or secondary phases.open1176sciescopu

    Evaluation of Errors Associated with Cutting-Induced Plasticity in Residual Stress Measurements Using the Contour Method

    Get PDF
    Cutting-induced plasticity can lead to elevated uncertainties in residual stress measurements made by the contour method. In this study plasticity-induced stress errors are numerically evaluated for a benchmark edge-welded beam to understand the underlying mechanism. Welding and cutting are sequentially simulated by finite element models which have been validated by previous experimental results. It is found that a cutting direction normal to the symmetry plane of the residual stress distribution can lead to a substantially asymmetrical back-calculated stress distribution, owing to cutting-induced plasticity. In general, the stresses at sample edges are most susceptible to error, particularly when the sample is restrained during cutting. Inadequate clamping (far from the plane of cut) can lead to highly concentrated plastic deformation in local regions, and consequently the back-calculated stresses have exceptionally high values and gradients at these locations. Furthermore, the overall stress distribution is skewed towards the end-of-cut side. Adequate clamping (close to the plane of cut) minimises errors in back-calculated stress which becomes insensitive to the cutting direction. For minimal constraint (i.e. solely preventing rigid body motion), the plastic deformation is relatively smoothly distributed, and an optimal cutting direction (i.e. cutting from the base material towards the weld region in a direction that falls within the residual stress symmetry plane) is identified by evaluating the magnitude of stress errors. These findings suggest that cutting process information is important for the evaluation of potential plasticity-induced errors in contour method results, and that the cutting direction and clamping strategy can be optimised with an understanding of their effects on plasticity and hence the back-calculated stresses
    corecore