30,038 research outputs found
Facilitation of polymer looping and giant polymer diffusivity in crowded solutions of active particles
We study the dynamics of polymer chains in a bath of self-propelled particles
(SPP) by extensive Langevin dynamics simulations in a two dimensional system.
Specifically, we analyse the polymer looping properties versus the SPP activity
and investigate how the presence of the active particles alters the chain
conformational statistics. We find that SPPs tend to extend flexible polymer
chains while they rather compactify stiffer semiflexible polymers, in agreement
with previous results. Here we show that larger activities of SPPs yield a
higher effective temperature of the bath and thus facilitate looping kinetics
of a passive polymer chain. We explicitly compute the looping probability and
looping time in a wide range of the model parameters. We also analyse the
motion of a monomeric tracer particle and the polymer's centre of mass in the
presence of the active particles in terms of the time averaged mean squared
displacement, revealing a giant diffusivity enhancement for the polymer chain
via SPP pooling. Our results are applicable to rationalising the dimensions and
looping kinetics of biopolymers at constantly fluctuating and often actively
driven conditions inside biological cells or suspensions of active colloidal
particles or bacteria cells.Comment: 15 pages, 9 figures, IOPLaTe
Localization of the relative phase via measurements
When two independently-prepared Bose-Einstein condensates are released from
their corresponding traps, the absorbtion image of the overlapping clouds
presents an interference pattern. Here we analyze a model introduced by
Javanainen and Yoo (J. Javanainen and S. M. Yoo, Phys. Rev. Lett. 76, 161
(1996)), who considered two atomic condensates described by plane waves
propagating in opposite directions. We present an analytical argument for the
measurement-induced breaking of the relative phase symmetry in this system,
demonstrating how the phase gets localized after a large enough number of
detection events.Comment: 8 pages, 1 figur
First-principles study on the intermediate compounds of LiBH
We report the results of the first-principles calculation on the intermediate
compounds of LiBH. The stability of LiBH and LiBH has been examined with the ultrasoft pseudopotential method based on
the density functional theory. Theoretical prediction has suggested that
monoclinic LiBH is the most stable among the candidate
materials. We propose the following hydriding/dehydriding process of LiBH
via this intermediate compound : LiBHLiBH LiH HLiH B H. The hydrogen content and enthalpy of the first
reaction are estimated to be 10 mass% and 56 kJ/mol H, respectively, and
those of the second reaction are 4 mass% and 125 kJ/mol H. They are in good
agreement with experimental results of the thermal desorption spectra of
LiBH. Our calculation has predicted that the bending modes for the
-phonon frequencies of monoclinic LiBH are lower than
that of LiBH, while stretching modes are higher. These results are very
useful for the experimental search and identification of possible intermediate
compounds.Comment: 7 pages, 5 figures, submitted to PR
Superfluid stability in BEC-BCS crossover
We consider a dilute atomic gas of two species of fermions with unequal
concentrations under a Feshbach resonance. We find that the system can have
distinct properties due to the unbound fermions. The uniform state is stable
only when either (a) beyond a critical coupling strength, where it is a gapless
superfluid, or (b) when the coupling strength is sufficiently weak, where it is
a normal Fermi gas mixture. Phase transition(s) must therefore occur when the
resonance is crossed.Comment: 4 pages, 4 figure
Optical Weak Link between Two Spatially Separate Bose-Einstein Condensates
Two spatially separate Bose-Einstein condensates were prepared in an optical
double-well potential. A bidirectional coupling between the two condensates was
established by two pairs of Bragg beams which continuously outcoupled atoms in
opposite directions. The atomic currents induced by the optical coupling depend
on the relative phase of the two condensates and on an additional controllable
coupling phase. This was observed through symmetric and antisymmetric
correlations between the two outcoupled atom fluxes. A Josephson optical
coupling of two condensates in a ring geometry is proposed. The continuous
outcoupling method was used to monitor slow relative motions of two elongated
condensates and characterize the trapping potential.Comment: 4 pages, 5 figure
Low velocity quantum reflection of Bose-Einstein condensates
We studied quantum reflection of Bose-Einstein condensates at normal
incidence on a square array of silicon pillars. For incident velocities of
2.5-26 mm/s observations agreed with theoretical predictions that the
Casimir-Polder potential of a reduced density surface would reflect slow atoms
with much higher probability. At low velocities (0.5-2.5 mm/s), we observed
that the reflection probability saturated around 60% rather than increasing
towards unity. We present a simple model which explains this reduced
reflectivity as resulting from the combined effects of the Casimir-Polder plus
mean field potential and predicts the observed saturation. Furthermore, at low
incident velocities, the reflected condensates show collective excitations.Comment: 4 figure
Fingerprints of Random Flows?
We consider the patterns formed by small rod-like objects advected by a
random flow in two dimensions. An exact solution indicates that their direction
field is non-singular. However, we find from simulations that the direction
field of the rods does appear to exhibit singularities. First, ` scar lines'
emerge where the rods abruptly change direction by . Later, these scar
lines become so narrow that they ` heal over' and disappear, but their ends
remain as point singularities, which are of the same type as those seen in
fingerprints. We give a theoretical explanation for these observations.Comment: 21 pages, 11 figure
Black hole formation in bidimensional dilaton gravity coupled to scalar matter systems
This work deals with the formation of black hole in bidimensional dilaton
gravity coupled to scalar matter fields. We investigate two scalar matter
systems, one described by a sixth power potential and the other defined with
two scalar fields containing up to the fourth power in the fields. The
topological solutions that appear in these cases allow the formation of black
holes in the corresponding dilaton gravity models.Comment: Latex, 9 pages. Published in Mod. Phys. Lett. A14 (1999) 268
- …