66 research outputs found

    The April Revolution and the Sense of Place in Medical Space: Focusing on Major Hospitals in Downtown Seoul

    Get PDF
    This article focuses on the medical activities conducted by major hospitals in downtown Seoul during the April Revolution in 1960, examining their experiential context and significance. The influx of guns and bullets into Korean society following the liberation in 1945 intertwined with the political and social conflicts of the period, resulting in numerous assassinations, crimes, and terrorism. Gunshot wounds were traumas that became a part of the everyday life of Koreans, as well as scars which reflected their historical contexts. At the same time, the frequent occurrence of gunshot wounds led to the development of medical capacities to treat them. The Korean surgical academia expanded its technical foundation with experiences during and after the Korean War. This progress was particularly noticeable in areas closely related to gunshot wounds, such as craniotomy, thoracotomy, vascular anastomosis, debridement, anesthesia, and blood transfusion. Major hospitals in downtown Seoul served as medical spaces where these experimental and technical foundations were concentrated, allowing them to minimize the death toll despite the massive gunfire by the National Police in April 1960. Thus, the aftermath of the epidemic of gunshots resulted in a rather paradoxical outcome.This development became a resource for doctors and nurses, who added their revolutionary implications in reconstructing the experience of April 1960 in their various memoirs and reports. While memoirs reorganized general medical activities, portraying injured patients as participants in the revolution, reports provided forensic descriptions and interpretations of the deaths, giving authority to the main narrative of the revolution. As the interpretations and significance based on historical contexts gained prominence, major hospitals in downtown Seoul also developed a sense of place closely associated with the revolution

    Duo: Software Defined Intrusion Tolerant System Using Dual Cluster

    Get PDF
    An intrusion tolerant system (ITS) is a network security system that is composed of redundant virtual servers that are online only in a short time window, called exposure time. The servers are periodically recovered to their clean state, and any infected servers are refreshed again, so attackers have insufficient time to succeed in breaking into the servers. However, there is a conflicting interest in determining exposure time, short for security and long for performance. In other words, the short exposure time can increase security but requires more servers to run in order to process requests in a timely manner. In this paper, we propose Duo, an ITS incorporated in SDN, which can reduce exposure time without consuming computing resources. In Duo, there are two types of servers: some servers with long exposure time (White server) and others with short exposure time (Gray server). Then, Duo classifies traffic into benign and suspicious with the help of SDN/NFV technology that also allows dynamically forwarding the classified traffic to White and Gray servers, respectively, based on the classification result. By reducing exposure time of a set of servers, Duo can decrease exposure time on average. We have implemented the prototype of Duo and evaluated its performance in a realistic environment

    Angiosarcoma of the Retroperitoneum: Report on a Patient Treated with Sunitinib

    Get PDF
    A 52 year-old woman presented with an incidentally detected retroperitoneal angiosarcoma and multiple hepatic metastases. After chemotherapy with weekly paclitaxel and doxorubicin, angiosarcoma had progressed rapidly. Because few chemotherapeutic options were available for her, sunitinib (37.5 mg/day, daily) as a salvage regimen was administered. Although sunitinib was interrupted after two weeks due to hematologic abnormalities, some metastatic nodules were regressed. Therefore, sunitinib was recommenced at a reduced dose (25 mg/day, daily). Serial computed tomography scans showed variable response in each tumor, however, sunitinib at least delayed tumor progression, compared to previous chemotherapy. With this case report, we suggest sunitinib may be effective against angiosarcomas. When sunitinib is administered to patients with angiosarcomas, hematologic abnormalities should be monitored frequently as severe hematologic toxicity may be caused either by sunitinib per se or angiosarcoma

    Use of Magnetic Nanoparticles to Visualize Threadlike Structures Inside Lymphatic Vessels of Rats

    Get PDF
    A novel application of fluorescent magnetic nanoparticles was made to visualize a new tissue which had not been detectable by using simple stereomicroscopes. This unfamiliar threadlike structure inside the lymphatic vessels of rats was demonstrated in vivo by injecting nanoparticles into lymph nodes and applying magnetic fields on the collecting lymph vessels so that the nanoparticles were taken up by the threadlike structures. Confocal laser scanning microscope images of cryosectioned specimens exhibited that the nanoparticles were absorbed more strongly by the threadlike structure than by the lymphatic vessels. Further examination using a transmission electron microscope revealed that the nanoparticles had been captured between the reticular fibers in the extracellular matrix of the threadlike structures. The emerging technology of nanoparticles not only allows the extremely elusive threadlike structures to be visualized but also is expected to provide a magnetically controllable means to investigate their physiological functions

    Unlocking the hidden chemical space in cubic-phase garnet solid electrolyte for efficient quasi-all-solid-state lithium batteries

    Get PDF
    Garnet-type Li7La3Zr2O12 (LLZO) solid electrolytes (SE) demonstrates appealing ionic conductivity properties for all-solid-state lithium metal battery applications. However, LLZO (electro)chemical stability in contact with the lithium metal electrode is not satisfactory for developing practical batteries. To circumvent this issue, we report the preparation of various doped cubic-phase LLZO SEs without vacancy formation (i.e., Li = 7.0 such as Li7La3Zr0.5Hf0.5Sc0.5Nb0.5O12 and Li7La3Zr0.4Hf0.4Sn0.4Sc0.4Ta0.4O12). The entropy-driven synthetic approach allows access to hidden chemical space in cubic-phase garnet and enables lower solid-state synthesis temperature as the cubic-phase nucleation decreases from 750 to 400 ??C. We demonstrate that the SEs with Li = 7.0 show better reduction stability against lithium metal compared to SE with low lithium contents and identical atomic species (i.e., Li = 6.6 such as Li6.6La3Zr0.4Hf0.4Sn0.4Sc0.2Ta0.6O12). Moreover, when a Li7La3Zr0.4Hf0.4Sn0.4Sc0.4Ta0.4O12 pellet is tested at 60 ??C in coin cell configuration with a Li metal negative electrode, a LiNi1/3Co1/3Mn1/3O2-based positive electrode and an ionic liquid-based electrolyte at the cathode|SE interface, discharge capacity retention of about 92% is delivered after 700 cycles at 0.8 mA/cm2 and 60 ??C

    HMGB1, a potential regulator of tumor microenvironment in KSHV-infected endothelial cells

    Get PDF
    High-mobility group box 1 (HMGB1) is a protein that binds to DNA and participates in various cellular processes, including DNA repair, transcription, and inflammation. It is also associated with cancer progression and therapeutic resistance. Despite its known role in promoting tumor growth and immune evasion in the tumor microenvironment, the contribution of HMGB1 to the development of Kaposi’s sarcoma (KS) is not well understood. We investigated the effect of HMGB1 on KS pathogenesis using immortalized human endothelial cells infected with Kaposi’s sarcoma-associated human herpes virus (KSHV). Our results showed that a higher amount of HMGB1 was detected in the supernatant of KSHV-infected cells compared to that of mock-infected cells, indicating that KSHV infection induced the secretion of HMGB1 in human endothelial cells. By generating HMGB1 knockout clones from immortalized human endothelial cells using CRISPR/Cas9, we elucidated the role of HMGB1 in KSHV-infected endothelial cells. Our findings indicate that the absence of HMGB1 did not induce lytic replication in KSHV-infected cells, but the cell viability of KSHV-infected cells was decreased in both 2D and 3D cultures. Through the antibody array for cytokines and growth factors, CXCL5, PDGF-AA, G-CSF, Emmprin, IL-17A, and VEGF were found to be suppressed in HMGB1 KO KSHV-infected cells compared to the KSHV-infected wild-type control. Mechanistically, phosphorylation of p38 would be associated with transcriptional regulation of CXCL5, PDGF-A and VEGF. These observations suggest that HMGB1 may play a critical role in KS pathogenesis by regulating cytokine and growth factor secretion and emphasize its potential as a therapeutic target for KS by modulating the tumor microenvironment

    Evaluation of low-pass genome sequencing in polygenic risk score calculation for Parkinsons disease

    Get PDF
    Background Low-pass sequencing (LPS) has been extensively investigated for applicability to various genetic studies due to its advantages over genotype array data including cost-effectiveness. Predicting the risk of complex diseases such as Parkinsons disease (PD) using polygenic risk score (PRS) based on the genetic variations has shown decent prediction accuracy. Although ultra-LPS has been shown to be effective in PRS calculation, array data has been favored to the majority of PRS analysis, especially for PD. Results Using eight high-coverage WGS, we assessed imputation approaches for downsampled LPS data ranging from 0.5 × to 7.0 × . We demonstrated that uncertain genotype calls of LPS diminished imputation accuracy, and an imputation approach using genotype likelihoods was plausible for LPS. Additionally, comparing imputation accuracies between LPS and simulated array illustrated that LPS had higher accuracies particularly at rare frequencies. To evaluate ultra-low coverage data in PRS calculation for PD, we prepared low-coverage WGS and genotype array of 87 PD cases and 101 controls. Genotype imputation of array and downsampled LPS were conducted using a population-specific reference panel, and we calculated risk scores based on the PD-associated SNPs from an East Asian meta-GWAS. The PRS models discriminated cases and controls as previously reported when both LPS and genotype array were used. Also strong correlations in PRS models for PD between LPS and genotype array were discovered. Conclusions Overall, this study highlights the potentials of LPS under 1.0 × followed by genotype imputation in PRS calculation and suggests LPS as attractive alternatives to genotype array in the area of precision medicine for PD.This work has been supported by Macrogen Inc. (Grant No. MGR20-01)

    Indigenous ancestry and admixture in the uruguayan population

    Get PDF
    The Amerindian group known as the CharrĂșas inhabited Uruguay at the timing of European colonial contact. Even though they were extinguished as an ethnic group as a result of a genocide, CharrĂșan heritage is part of the Uruguayan identity both culturally and genetically. While mitochondrial DNA studies have shown evidence of Amerindian ancestry in living Uruguayans, here we undertake whole-genome sequencing of 10 Uruguayan individuals with self-declared Charruan heritage. We detect chromosomal segments of Amerindian ancestry supporting the presence of indigenous genetic ancestry in living descendants. Specific haplotypes were found to be enriched in “CharrĂșas” and rare in the rest of the Amerindian groups studied. Some of these we interpret as the result of positive selection, as we identified selection signatures and they were located mostly within genes related to the infectivity of specific viruses. Historical records describe contacts of the CharrĂșas with other Amerindians, such as GuaranĂ­, and patterns of genomic similarity observed here concur with genomic similarity between these groups. Less expected, we found a high genomic similarity of the CharrĂșas to Diaguita from Argentinian and Chile, which could be explained by geographically proximity. Finally, by fitting admixture models of Amerindian and European ancestry for the Uruguayan population, we were able to estimate the timing of the first pulse of admixture between European and Uruguayan indigenous peoples in approximately 1658 and the second migration pulse in 1683. Both dates roughly concurring with the Franciscan missions in 1662 and the foundation of the city of Colonia in 1680 by the Spanish.ANII: FSDA_1_2017_1_14364
    • 

    corecore