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Abstract 

Background:  Low-pass sequencing (LPS) has been extensively investigated for applicability to various genetic 
studies due to its advantages over genotype array data including cost-effectiveness. Predicting the risk of complex 
diseases such as Parkinson’s disease (PD) using polygenic risk score (PRS) based on the genetic variations has shown 
decent prediction accuracy. Although ultra-LPS has been shown to be effective in PRS calculation, array data has been 
favored to the majority of PRS analysis, especially for PD.

Results:  Using eight high-coverage WGS, we assessed imputation approaches for downsampled LPS data ranging 
from 0.5 × to 7.0 × . We demonstrated that uncertain genotype calls of LPS diminished imputation accuracy, and an 
imputation approach using genotype likelihoods was plausible for LPS. Additionally, comparing imputation accura‑
cies between LPS and simulated array illustrated that LPS had higher accuracies particularly at rare frequencies. To 
evaluate ultra-low coverage data in PRS calculation for PD, we prepared low-coverage WGS and genotype array of 87 
PD cases and 101 controls. Genotype imputation of array and downsampled LPS were conducted using a population-
specific reference panel, and we calculated risk scores based on the PD-associated SNPs from an East Asian meta-
GWAS. The PRS models discriminated cases and controls as previously reported when both LPS and genotype array 
were used. Also strong correlations in PRS models for PD between LPS and genotype array were discovered.

Conclusions:  Overall, this study highlights the potentials of LPS under 1.0 × followed by genotype imputation in PRS 
calculation and suggests LPS as attractive alternatives to genotype array in the area of precision medicine for PD.
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mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Although the costs of genome sequencing have been 
reduced over the past decade [1], the expense of whole-
genome sequencing (WGS) is still expensive for many 
genetics studies including genome-wide association 

studies (GWAS), which require large sample sizes. 
Instead, genotyping array is preferred in most large-
scale studies due to its financial advantages [2]. Low-pass 
sequencing (LPS) is the type of WGS with genome cov-
erage from 0.5 × to 5.0 × [3, 4]. Since it covers the whole 
genome with low-coverage, LPS is relatively more cost-
efficient compared to deep WGS with coverage around 
30 × . Additionally, LPS is advantageous over genotyping 
arrays in many cases. For instance, genotyping array may 
have ascertainment bias within assayed SNPs, discover-
ing novel variation both at sample or population level can 
be feasible when LPS is used [4] so that LPS with geno-
type imputation increases GWAS power compared to 
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using array [5]. These cases suggested that LPS followed 
by genotype imputation is a decent alternative to geno-
typing arrays [6].

Parkinson’s disease (PD) is one of the common neuro-
degenerative disorders and exerts a significant influence 
on the world in terms of both healthcare and economy 
[7]. Although the biggest risk factors of PD include age 
and numerous environmental factors, several genetic 
factors also contribute to PD pathogenesis [8]. Under-
standing the genetic architecture underlying PD is cru-
cial, particularly in developing PD treatments [9]. Despite 
several GWAS identified PD-associated variants, they 
poorly explained the observed heritability [10]. Correla-
tions between genetic factors and this disease still remain 
unclear due to limited understanding of biological func-
tions of causative variants [11] and complex characteris-
tics of PD including heterogeneity and association with 
multiple genes and pathways [12]. Furthermore, most 
risk-associated variants for PD were identified from the 
patients of European ancestry, and little is known for 
other populations including East Asian populations [11].

Polygenic risk score (PRS) has been widely used for 
predicting the risk of many complex diseases and traits 
based on summation of risk alleles and weighted by their 
effect sizes derived from GWAS results, and it becomes 
an important factor in the field of precision medicine 
[13]. Regarding PD, analyzing PRS demonstrated effec-
tive predictive power associated with PD symptoms [14, 
15]. Here, we performed the PRS analysis to compare 
predictive power based on genotype array and LPS using 
risk variants from a meta-GWAS of matched ancestries, 
to evaluate the efficiency of using LPS for PRS prediction 
models.

Results
Assessing appropriateness of imputation method 
for low‑coverage genotypes
The quality of most genotypes from low-coverage is often 
poor, and sparsely mapped reads likely generate high 
missing rates of genotypes. Therefore, genotype likeli-
hoods (GL) of low-coverage data need to be updated 
using the reference panel for more accurate genotype 
imputation [16, 17]. Recently, the GL imputation and 
phasing method (GLIMPSE) was developed to iteratively 
perform haplotype phasing and genotype imputation 
for LPS data using a Gibbs sampling procedure [16]. To 
evaluate the validity of this approach for LPS, we com-
pared the imputation accuracy of this method to the tra-
ditional imputation using Eagle [18] and Minimac4 [19]. 
Genotype concordances were measured as Pearson’s cor-
relation coefficients (R2) and non-reference discordance 
rates (NDR) between high-coverage and imputed geno-
types. We prepared simulated LPS data by downsampling 

high-coverage WGS to 0.5 × , 1.0 × , 2.0 × , 3.0 × , 4.0 × , 
5.0 × , 6.0 × and 7.0 × . Aligned read distribution for 
each LPS data was presented (Additional file  1: Figure 
S1). Of the whole genome, the rates of genome covered 
by sequencing read were 35.0%, 55.7%, 75.3%, 82.4%, 
85.0%, 86.0%, 86.4%, 86.5% and 86,6% for 0.5 × , 1.0 × , 
2.0 × , 3.0 × , 4.0 × , 5.0 × , 6.0 × , 7.0 × and raw WGS, 
respectively (Fig.  1a). From 5.0 × LPS, covering rates 
were increased to the extent of high-depth WGS. We 
also assessed uniformity of sequencing reads across the 
genome using the area under Lorenz curve called Gini 
coefficient. The degree of uniformity can be represented 
ranging from 0 to 1 where ideal uniformity indicates 
coefficient of 0 [20, 21]. The average Gini coefficients of 
LPS were 0.229, 0.201, 0.182, 0.174, 0.169, 0.166, 0.164 
and 0.162 for 0.5 × , 1.0 × , 2.0 × , 3.0 × , 4.0 × , 5.0 × , 
6.0 × and 7.0 × , respectively, and coefficient of raw high-
depth WGS was 0.153. This result demonstrated that dis-
tribution of sequencing reads is uniform as sequencing 
depth increases (Fig. 1a).

As expected, sequencing depth was proportional to R2 
and inversely proportional to NDR when genotype con-
cordances were measured between non-imputed LPS 
data and high-coverage genotypes (Additional file  2: 
Figure S2). Then, we compared genotype concordances 
between high-coverage genotypes and downsampled fol-
lowed by imputed dosages. Genotype imputation was 
performed using a merged panel consisting of North-
east Asian Reference Database (NARD) and the 1000 
Genomes Project Phase 3 (1KGP3) panel (NARD1) [22]. 
Consistent with comparison between high-coverage 
and raw downsampled genotypes, imputed genotypes of 
higher downsampled depth had improved R2 with high-
coverage genotypes when Eagle and Minimac4 were 
used for phasing and imputation, respectively. However, 
GLIMPSE showed constantly high R2 across downsam-
pled depths (Fig.  1b). The NDR were highly depend-
ent on the depth when Eagle and Minimac4 was used, 
but GLIMPSE had constantly low NDR across different 
depths (Fig.  1c). Most importantly, LPS under 3.0 × had 
very poor imputation accuracy (R2 = 0.473, 0.592 and 
0.723, and NDR = 53.1, 46.8 and 35.6 for 0.5 × , 1.0 × and 
2.0 × , respectively) when imputation was conducted 
using Minimac4. We also calculated genotype concord-
ance using the 1KGP3 panel only, and the results dem-
onstrated a similar pattern with imputed genotypes using 
NARD1 (Additional file  12: Table  S1). Moreover, we 
identified the rate of false positive (FPR) and false nega-
tive (FNR) by comparing high-coverage genotypes and 
imputed dosages using two different methods. Using 
GLIMPSE had constantly low FPR and FNR which were 
below 1% across low depths while the other approach 
had high FPR and FNR, especially below 3.0 × (FPR: 
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Fig. 1  General sequencing statistics and genotype concordance between high-coverage WGS and LPS. a Across downsampled LPS and 
high-depth WGS, left graph shows fraction of whole-genome covered and right shows sequencing read uniformity, measured by Gini coefficients 
using Lorenz curve constructed with cumulative fraction of sequencing reads within the window size of 10 k base pair of genomic regions. 
Genotype concordance plots comparing eight high-coverage WGS and LPS constructed by downsampling WGS to low coverage ranging 
from 0.5 × to 7.0 × . Red and green color represent different imputation approaches; GLIMPSE and Minimac4, respectively. The x-axis represents 
downsampled depth. The y-axis represents imputation performances; b Pearson’s correlation coefficient (R2) and c Non-reference discordance rate. 
d Details of genotype concordances between high-coverage genotypes and imputed dosages. The rates of false positive (FPR) and negative (FNR) 
denote mismatches when reference allele in high-coverage but alternates in imputed LPS, and mismatches when alternate allele in high-coverage 
but reference in imputed LPS, respectively. The x-axis represents each LPS depth, and the y-axis represents a fraction of each concordance case
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10.5%, 6.10%, 3.93% and 2.77%, FNR: 25.3%, 24.8%, 17.3% 
and 11.6% at 0.5 × , 1.0 × , 2.0 ×  and 3.0 ×, respectively; 
Fig. 1d).

Imputation performance of LPS and array at different allele 
frequencies
We primarily compared the average number of typed and 
imputed variants across eight individuals. We observed 
relatively more typed variants at 0.5 × than simulated 
array (670 k vs 1.66 million SNPs for array and 0.5 × LPS, 
respectively; Additional file  3: Figure S3). Also, larger 
portion of typed variants by increasing sequencing 
depths, and plateau from 5.0 × (Additional file  3: Figure 
S3). To further investigate imputation performance for 
LPS using GLIMPSE, we compared imputation accuracy 
of 4,958,741 overlapping SNPs across LPS data at differ-
ent allele frequencies (AF). Along with LPS, we created a 
simulated genotype array data by extracting genotypes at 
global screening array (GSA) regions from high-coverage 
WGS to compare performance between array and LPS. 
Non-reference AF bins were determined based on AF of 
East Asian from the Genome Aggregation database (gno-
mAD) v3.1 database [23]. Consistent with the previous 
results [16, 24], we discovered that imputed dosages from 
LPS were relatively more accurate than those from GSA 
at each AF, particularly at rare AFs. Within LPS data, 
the depth and overall imputation accuracy of each LPS 
were proportional as expected. For rare (< 0.5%) variants, 
all of LPS data had R2 of below 0.8, especially, 0.5 × had 
deficient results (aggregate R2 = 0.52 and SD = 0.46, and 

aggregate R2 = 0.71 and SD = 0.39 for AF < 0.2% and 
0.2% ≤ AF < 0.5%, respectively; Fig.  2 and Additional 
file 12: Table S2). The R2 of ultra-low coverage (< 3.0 ×) at 
rare and low frequency (AF < 5%) were lower than those 
of LPS with > 3.0 × . The differences in imputation accu-
racy between each LPS were diminished as AF increases 
(from AF > 5%), and subtle differences were observed for 
SNPs with AF > 50% (Fig. 2a). Generally, SNPs with impu-
tation scores (R2) of > 0.8 were used in GWAS [12], and 
considered to be high quality. Consistent with Fig. 2a, the 
number of accurately imputed SNPs was relatively higher 
in LPS than GSA at each non-reference allele frequency 
bin, particularly differences in quality were higher at rare 
frequency bins (Additional file  4: Figure S4). As the R2 
of variants at rare frequency bins were highly variable 
(Additional file  12: Table  S2), we directly compared the 
fraction of high imputed quality SNPs (R2 > 0.8) that were 
more accurately imputed among the overlapping imputed 
SNPs between GSA and LPS. The quality of most SNPs 
(> 0.6) were more decent in LPS, and from 3.0 × , more 
than 90% of SNPs were more accurate across every allele 
frequency bins. Also, the fractions in these LPS were 
diminished as allele frequencies are increasing at ultra-
low coverage (0.5 × and 1.0 ×) (Fig. 2b).

Selecting PD‑associated SNPs for PRS calculation
The GWAS summary statistics of 23 million SNPs for 
PD from the UK Biobank study of 1239 PD cases and 
451,025 controls of European ancestry (UK Biobank 
G20) [25], and 74 SNPs that were previously identified to 
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Fig. 2  Imputation accuracy comparison across allele frequency bins. a Imputation accuracy of simulated GSA and downsampled LPS constructed 
by 8 WGS at each frequency bin. Two different approaches; GLIMPSE and Minimac4 were used for imputing downsampled LPS and simulated 
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be associated with PD from several GWAS using Euro-
pean populations (EUR total) [12]. However, the GWAS 
results from a certain population need to be carefully 
selected and used for predicting disease risks [26]. To 
avoid unwanted bias arising from unmatched popula-
tions between GWAS results and target data, we addi-
tionally selected PD-associated risk SNPs derived from 
a large-scale meta-GWAS of 6,724 PD cases and 24,851 
controls from East Asian populations [12] (Table 1). We 
prepared three identified SNP sets for East Asians to 
construct PRS model from this GWAS: (1) the 11 East 
Asian SNPs that were defined as genome-widely signifi-
cant (EAS; threshold: P < 5.00 × 10–8) in a meta-GWAS, 
(2) the 9 previously identified to be associated with PD in 
European populations that were replicated in this meta-
GWAS (EUR replicated; threshold: P < 1.00 × 10–5) and 
(3) combined EAS and EUR replicated SNPs (Combined 
set). For the Combined set, we excluded less significant 
SNPs within the same linkage disequilibrium blocks 
(R2 ≥ 0.5) using LDmatrix [27]. As previously stated in 
a meta-GWAS, most PD-associated SNPs were com-
mon SNPs (effect AF > 5%) from gnomAD v3.1, but only 
rs141336855 had AF of 0.1% from gnomAD v3.1 global, 
but 2.6% and 2.4% from gnomAD v3.1 East Asian and 
NARD, respectively. Also the effect AF of rs16846351 

was 1.6% at global population, but AF > 5% for East Asian 
population. Among these PD-associated SNPs, the 2 
SNPs were typed in GSA data, and others were imputed. 
The missing rates and average depths per each SNP were 
consistent with their downsampled coverage (Additional 
file 12: Table S3). We further tested imputation accuracy 
of selected PD-associated SNPs using 8 high-coverage 
WGS, and high imputation accuracy for 0.5 × , 1.0 × and 
2.0 × data were achieved when GLIMPSE was used (aver-
age R2 = 0.998 and 0.992 for NARD1 and 1KGP3 panel, 
respectively; Additional file  5: Figure S5 and Additional 
file 12: Table S4).

Comparative PRS analysis between genotyping array 
and LPS for PD
We prepared GSA and WGS with an average depth of 
5.0 × data of 188 individuals to perform comparative PRS 
analysis for PD risk prediction. To evaluate the efficiency 
of ultra-low coverage, we downsampled WGS to 0.5 × , 
1.0 × and 2.0 × (Additional file  6: Figure S6). Currently, 
pruning and thresholding (P + T) method is one of the 
most widely used calculation approach to construct PRS 
model with the LD and P-value as parameters. In addi-
tion to P + T approach, several Bayesian approaches for 
PRS calculation have been continuously developed. We 

Table 1  Parkinson’s disease associated risk SNPs from an East Asian meta-genome-wide association study (Foo et al. [20])

a Feature: EAS represents significant SNPs from this GWAS (P < 5.00 × 10–8); EUR replicated represents replicated SNPs in this GWAS (P < 1.00 × 10–5)

rs ID Chromosome Position Effect allele Featurea Effect allele frequency

gnomAD 
v3.1 ALL

gnomAD 
v3.1 EAS

NARD ALL NARD KOR

rs823118 1 205,723,572 T EUR replicated 45.7% 54.3% 51.4% 52.5%

rs6679073 1 205,756,484 A EAS 22.0% 53.3% 49.7% 51.2%

rs16846351 1 226,846,712 G EAS 1.6% 6.3% 6.0% 6.4%

rs4653767 1 226,916,078 T EUR replicated 72.7% 72.1% 23.8% 22.2%

rs2292056 3 182,735,211 T EAS 77.9% 41.5% 59.9% 63.1%

rs12637471 3 182,762,437 G EUR replicated 75.3% 42.0% 59.9% 62.9%

rs34311866 4 951,947 C EUR replicated 14.2% 13.8% 17.7% 16.9%

rs11724635 4 15,737,101 A EUR replicated 43.5% 37.5% 36.9% 34.3%

rs3816248 4 77,101,068 T EAS 86.6% 66.1% 32.5% 33.4%

rs356182 4 90,626,111 G EUR replicated 35.2% 66.2% 31.6% 29.1%

rs6826785 4 90,682,474 C EAS 21.7% 54.8% 54.7% 55.5%

rs246814 5 75,599,208 T EAS 9.6% 9.1% NA NA

rs1887316 6 112,151,452 G EAS 81.1% 87.9% 12.4% 14.2%

rs997368 6 112,243,291 A EUR replicated 65.5% 64.2% 39.3% 39.6%

rs9638616 7 70,750,493 T EAS 37.9% 49.2% 55.0% 55.1%

rs12278023 11 83,510,117 T EAS 55.1% 50.2% 47.7% 48.6%

rs3793947 11 83,544,472 G EUR replicated 57.4% 53.4% 46.3% 47.0%

rs141336855 12 40,387,749 T EAS 0.1% 2.6% 2.4% 2.4%

rs12456492 18 40,673,380 G EUR replicated 32.8% 38.0% 42.7% 40.9%

rs4130047 18 40,678,235 C EAS 32.2% 37.8% 42.6% 40.7%
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therefore used P + T method and Bayesian approaches; 
PRScs [28] and EB-PRS [29] with and without refer-
ence LD information, respectively. Using these multiple 
approach for PRS calculation, we assessed the discrimi-
nation of PRS between PD cases and controls using area 
under curve (AUC) metrics. To extensively evaluate the 
performances in PRS, we first calculated PRS based on 
SNP sets derived from the UK Biobank study [25] and 74 
known SNPs from European populations [12] to leverage 
larger number of SNPs regardless of matched ethnicity. 
Then, we conducted unadjusted PRS analysis using a total 
of three different combinations of significantly associated 
SNPs with PD in East Asian populations as described in 
the previous section. For P + T, the best AUC was chosen 
among the multiple P value thresholds (Additional file 7: 
Figure S7).

The AUC using UK Biobank G20 and EUR total were 
approximately from 0.50 to 0.60 and the average AUC 
of four different approaches based on the Combined set 
were 0.605 which was the highest AUC among the five 
different PRS sets (Fig. 3a). Using SNP sets from the East 
Asian study, we observed dramatic drop in AUC when 
PRScs was used. And we found that only 27.0%, 45.5%, 
22.2% and 37.5% of whole EUR total, EAS, EUR repli-
cated and Combined, respectively, were considered for 
PRS calculation using PRScs. Also, only single SNP in 
the EUR replicated set was taken into account for P + T 
approach. In addition to AUC results using GSA, the 
patterns of AUC using LPS and raw WGS (5.0 ×) were 
highly homogeneous with those using GSA and slight 
improvement for PRScs when LPS were used (Additional 
file  8: Figure S8). Overall, both GSA and low-coverage 
WGS showed that using SNPs that were significant in 
East Asians had relatively higher AUC.

Using significantly PD-associated SNPs in East Asian 
population, density plots of PRS using GSA data dem-
onstrated that the distribution of standardized PRS for 
PD cases were shifted to the right compared to those of 
controls, and mean score of 0.0916 vs 0.0816 for PD cases 
and controls, respectively (Fig. 3b). Besides, we observed 
that PRS using LPS had comparable shifting pattern with 
GSA, indicating that higher PRS within PD cases than 
controls (Additional file 9: Figure S9). We illustrated the 
receiver operating characteristic (ROC) curves of East 
Asian sets, the unadjusted AUC of a PRS model based 
on the Combined set had an average of 0.653 (0.654; 95% 
CI 0.575–0.733, 0.656; 95% CI 0.577–0.734, 0.649; 95% 
CI 0.570–0.728, 0.651; 95% CI 0.572–0.730 and 0.657; 
95% CI 0.578–0.735 for GSA, LPS 0.5 × , LPS 1.0 × , LPS 
2.0 × and WGS 5.0 × , respectively; Fig.  3c). We com-
pared the predictive power of PRS using different types 
of genomic data; GSA and LPS, and there was no signifi-
cant difference in scores between GSA and LPS 0.5 × , 

1.0 × 2.0 × and WGS 5.0 × on same PRS models (P > 0.5, 
F value = 0.018, 0.008 and 0.004 for EAS, EUR repli-
cated and Combined SNPs, respectively; Fig. 3c). Also we 
found negligible differences in AUC between GSA and 
low coverage WGS data when PRS were computed using 
the EAS and EUR replicated which had average AUCs of 
0.614 and 0.638, respectively (Additional file  10: Figure 
S10). The PRS calculated by imputed genotypes using the 
1KGP3 panel had average AUC of 0.616, 0.627 and 0.650 
for EAS, EUR replicated and Combined set, respectively 
(Additional file  12: Table  S5). Our results demonstrated 
successful replication of PD SNPs in our cohort and were 
consistent with a meta-GWAS result showing improve-
ment in AUC when two SNP sets were combined [12].

Furthermore, strong correlations were discovered 
between calculated scores using GSA and different cover-
age of LPS. The mean correlation coefficients were above 
0.95 and 0.80 when EUR total and UK Biobank G20 were 
used, respectively (Fig.  4a), but we observed relatively 
lower correlation coefficient between GSA and LPS for 
UK Biobank G20 using P + T approach due to larger dif-
ferences in the number of SNP between GSA and LPS. 
For scores based on the Combined set using East Asian 
SNPs, correlation coefficients were > 0.98 for all LPS data 
(0.981, 0.985, 0.986 and 0.985 for 0.5 × , 1.0 × , 2.0 × and 
WGS 5.0 × ; Fig.  4b). Other PRS sets using significant 
SNPs in the East Asian study (EAS and EUR replicated) 
also had robust correlation between GSA and LPS data 
(R2 > 0.98; Additional file  11: Figure S11), and R2 > 0.95 
when the 1KGP3 reference panel was used for imputation 
(Additional file 12: Table S6).

Discussion
Previously, genotype concordances between low-cover-
age (~ 0.5 ×) and genotype array, and deep sequencing 
data (~ 30 ×) were highly correlated, and several stud-
ies have continuously demonstrated potentials of LPS 
for precision medicine [4, 6]. Additionally, LPS under 
1.0 × has shown strong advantages over genotype array 
in terms of cost and imputation accuracy [24, 30]. Typi-
cally, LPS around 1.0 × is expected to be half of the cost 
of genotype array with less than 1 million variants. With 
a high-quality imputation derived from a decent refer-
ence panel, LPS under 1.0 × can be more suitable for 
large-scale genetic studies. To assess availability of LPS, 
we first evaluated the effect of newly established impu-
tation for LPS using various low-coverage depths. High 
coverage WGS were downsampled ranging from 0.5 × to 
7.0 × , and we observed that fixed genotype calls of down-
sampled WGS were highly incorrect compared to high-
coverage genotypes (Additional file  2: Figure S2). This 
inaccuracy of genotype call is the culprit for extremely 
low imputation accuracy using a traditional approach 
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implemented hidden Markov model which takes diploid 
genotypes of target samples into account to compute 
probability of diploid [18]. Inferred haplotype pairs based 
on unreliable genotype calls would result inaccurate fill-
ing the gaps between the markers. Therefore, proba-
bilistic form of genotypes called GL should be used for 

low-coverage data instead of genotype calls to consider 
all possible genotype possibilities based on mapping and 
quality scores [16], and imputation which updates GL 
would resolve unreliability of imputed LPS and showed 
high imputation accuracy. Although refining GL requires 
high computational burden, GLIMPSE shows fast and 
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accurate imputation calls using a novel linear time sam-
pling algorithm which is appropriate for the size of large 
reference panel [16]. This result validated that appropri-
ate imputation for LPS is crucial, particularly for obtain-
ing correct alternate alleles (Fig. 1).

Further assessment on imputation accuracy pre-
sented that LPS for rare (< 0.5%) and low (< 5%) variants 
still had relatively lower accuracies than common vari-
ants, but outperformed when simulated GSA data was 
imputed. The aggregate R2 and direct comparison of 
overlapping SNPs between LPS and GSA demonstrated 
that higher imputation accuracies were obtained from 
LPS data, especially at rare frequency bins (Fig. 2a). This 
results suggest that LPS would be beneficial for rare 
variant imputation. We demonstrated that sequencing 
reads are sparsely covered more than half of the entire 
genome with decent uniformity at low coverage from 
1.0 × (Fig.  1a). Since dense genotype array only cov-
ers relatively small amount of genome, more accurate 
imputed genotypes can be potentially obtained by lever-
aging more number of GL from sequencing reads than 
a traditional approach using genotype array. One of the 
strategies to overcome this missing heritability of PD is 
capturing rare variants by increasing sample size of the 
studies or covering the whole genome including non-
coding regions for identifying more promising candidates 
[10]. Our results suggest that in the case of when rare and 

pathogenic variants were prevalent in disease-cases with 
low PRS [31], LPS followed by imputation would increase 
the power of PRS by combining accurately imputed rare 
pathogenic variants using the population-specific refer-
ence panel.

We selected a cohort of Parkinson’s disease (PD) 
because it is one of the most common neurodegenera-
tive diseases with complex genetic characteristics. Even 
though substantial efforts have been devoted to elucidate 
the complex genetic architecture of PD, predicting early 
diagnosis of PD is still challenging due to missing herit-
ability of this disease. To evaluate the performance of LPS 
for predicting a complex disease, we prepared a cohort 
of 188 Korean individuals including 87 PD cases and 101 
controls and generated genotyping array and WGS data 
to an average depth of 5.0 × , which is known to be the 
minimum coverage for accurately detecting genome vari-
ation [32], and showed high genome concordance with 
30 × [3]. Primarily, the PRS analyses were performed by 
leveraging genome-wide SNPs and calculation methods 
including P + T and Bayesian models with and without 
reference LD information. In terms of predictive power 
of PRS, both LPS and GSA showed poor performances 
overall, potentially due to utilizing SNPs from European 
populations. The results of AUC using multiple PRS cal-
culation approach with different sets of SNPs highlighted 
that PRS based on matched population is important for 
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more accurate PRS analysis. Selecting PD-associated 
SNPs as base data for PRS calculation should be care-
fully addressed because risk AF and PRS were inconsist-
ent across the ethnicity groups, and such bias could cause 
misestimation of genetic disease risks [24, 26]. Since the 
majority of GWAS for a variety of traits and diseases 
including PD are biased to European ancestries [11], we 
therefore chose significantly identified PD-associated 
SNPs from a meta-GWAS consisting of East Asian indi-
viduals for further analysis. The performances of PRS 
were highly variable across tools and sets as significantly 
identified SNPs for PD in the East Asian meta-GWAS 
were less than 20, and PRScs limitedly utilized SNPs due 
to reference LD information (Fig. 3a).

Whether using genome-wide SNPs around 100  k or 
population-specific SNPs, correlation of individual scores 
between LPS and array were generally high, particularly 
for East Asian SNPs (Fig.  4). Along with higher accu-
racy for rare variant compared to the array, this homo-
geneity of common SNPs between array and LPS suggest 
that LPS would be valuable in PRS analysis. Regarding 
the power of PRS, although our result showed below the 
level of accurate prediction, a number of PRS models 
had been demonstrated that PRS with clinical informa-
tion would increase PD predictions [33, 34]. Additionally, 
we expected that mapping PRS using LPS with data from 
emerging technologies such as machine learning and 
single-cell RNA sequencing would improve the power of 
prediction and elucidate the genetics of PD [11].

Conclusion
We demonstrated the potential of LPS with coverage less 
than 1.0 × to be used for predicting PD, and suggested 
cost-efficient LPS to replace GSA data which have been 
widely and popularly used in this field. Therefore, we 
believe that utilization of LPS could become useful in 
precision medicine with financial and technical advan-
tages over genotype array.

Materials and methods
Data collection and sequencing
A total of 188 Korean individuals, consisting of 87 indi-
viduals diagnosed with PD and 101 controls, were col-
lected at Asan Medical Center (Seoul, South Korea). 
High-depth WGS were generated using additional eight 
Koreans without PD diagnosis from the cohort for eval-
uating imputation performance of downsampled data. 
Genomic DNA from the blood of collected individuals 
were extracted and prepared. All quality control passed 
blood genomic DNA samples were subjected to library 
preparation with the Illumina Nextera DNA Flex kit 
(Illumina, USA) following manufacturer’s instruction. 
Briefly, input genomic DNA was treated with bead-linked 

transposomes. After tagmentation stop reaction and 
purification, tagmented genomic DNA was amplified by 
PCR reaction with recommended cycles described in 
the manufacturer’s instruction. Library was quantified 
both with the quantitative PCR method (KAPA Library 
Quantification Kit; Kapa Biosystems, USA) and fluores-
cent method (Qubit dsDNA HS assay Kit; Thermo Fisher 
Scientific, USA). Each constructed and measured library 
was normalized by diluting with the calculated amount 
of nuclease-free water, and all normalized libraries were 
pooled and then sequenced with the Illumina NovaSeq 
6000 platform (Illumina, USA) based on the manufac-
turer’s instruction.

Data processing
Obtained DNA was genotyped on the customized Global 
Screening Array (GSA; Illumina, USA) which captured 
multiethnic genetic variation. Genotypes were processed 
to variant call format (VCF) files according to the manu-
facturer’s guide using Illumina’s GenomeStudio and the 
in-house processing method. Produced individual VCFs 
were called and merged using GATK v4.1.2 [35], then 
variants were normalized using bcftools v1.3.1 [36]. Raw 
sequencing data was processed based on the GATK’s best 
practice with the following steps: Sequence trimming 
using Trimmomatic, read alignment to the human refer-
ence genome (hg19) using BWA v0.7.17 [37], sort BAM 
file and mark duplicate reads using Picard v2.18.25, and 
base recalibration and haplotype call were conducted 
using GATK v4.1.2.

Downsampling and coverage distribution
To evaluate the efficiency of LPS coverage, we downsam-
pled eight high-coverage (average depth of 27.2 ×) WGS 
to 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 and 7.0 × using SAMtools 
view [36] based on the calculated proportion for subsam-
pling WGS to low-coverage data. For PRS analysis using 
188 individuals including the PD cases and controls, we 
also downsampled raw sequencing data to 0.5, 1.0 and 
2.0 × . Coverage distributions for downsampled data were 
calculated using aligned read count per genotypes. The 
Gini coefficients were calculated using the ratio of area 
under the Lorenz curve which was generated by cumu-
lative fraction of sequencing reads and genomic regions. 
We set the size of window for calculating number of 
reads as 10 k base pair length.

Phasing and imputation
We performed genotype phasing using Eagle v2.4 [18] 
and imputation using Minimac4 [19] based on the 
1KGP3 [38] which is the most conventional panel and 
an East Asian specific reference panel, called the NARD 
[22] merged with 1KGP3. After imputation, we filtered 
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variants with information score below 0.3, and remain-
ing imputed genotypes were converted into PLINK [39] 
binary format for further analyses. Also we conducted 
genotype imputation for LPS data using GLIMPSE. 
Mapped reads at only bi-allelic sites of each reference 
panel were extracted from LPS BAM data using bcftools 
mpileup because the presence of indels might affect the 
imputation quality [16]. Then iterative refinement of 
GL using the reference panels with segmentation size of 
2 Mb with buffer size of 200 kb produced imputed dos-
ages and multiple chunks within each chromosome were 
ligated.

Genotype concordance assessment
We compared raw and imputed downsampled to high-
coverage WGS to assess genotype concordance for 
evaluating imputation performance. We extracted over-
lapping variants between two sets of WGS. Pearson’s cor-
relation coefficient (R2) and non-reference discordance 
rates were computed using bcftools stats. We extracted 
a total of 1,373,903 overlapping variants between differ-
ent depths of non-imputed downsampled LPS and high-
coverage WGS, to compare genotype concordances. For 
assessing two different imputation approaches, 5,371,175, 
5,465,923, 5,468,916, 5,469,108, 5,469,158, 5,469,208 and 
5,469,213 overlapping variants between approaches were 
used for 0.5 × , 1.0 × , 2.0 × , 3.0 × , 4.0 × , 5.0 × , 6.0 × and 
7.0 × , respectively.

PRS calculation
Calculating PRS requires two types of data; GWAS sum-
mary statistics including known risk allele with their 
effect sizes are called base data, and individual-level 
genotype data with their phenotypes are called target 
data [40]. We converted bi-allelic genotyped and imputed 
autosomal SNPs of each GSA and LPS into PLINK2 
binary format. For P + T approach, we conducted LD 
clump using PLINK [39] with a LD parameter of 0.5 and 
P value thresholds were set ranging from 5.00E-02 to 
1.00E-20. Bayesian approaches including PRScs [28] and 
EB-PRS [29] were conducted with default parameters. 
For PRScs, we used reference LD information of 1KGP3 
for East Asian populations. Summation of the number 
of risk alleles weighted by their effect size from an East 
Asian meta-GWAS summary statistic [12]. Individual 
scores were calculated as below:

where k is PD-associated SNP, w is the effect size as 
weight and X is the number of effect alleles (risk alleles). 

PRS =

k∑

k=1

wkXk

Calculated scores were normalized to have mean zero 
using PLINK. Area under the curve (AUC) of PRS for 
each variant set was estimated using scikit-learn libraries 
[41].
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Additional file 1: Figure S1. Distribution of aligned read per genotype of 
downsampled WGS of eight individuals. The x-axis represents the number 
of read counts aligned to the genotypes. The y-axis represents a fraction of 
genotypes from downsampled WGS of eight individuals.

Additional file 2: Figure S2. Genotype concordance between high-
coverage genotypes and non-imputed genotypes. The x-axis represents 
each downsampled depths, and the y-axis represents a, Pearson’s correla‑
tion coefficient (R2), and b, Non-reference discordance rate.

Additional file 3: Figure S3. Number of typed and imputed variants in 
million from simulated array (GSA) and downsampled LPS from 0.5 × to 
7.0 × .

Additional file 4: Figure S4. Number of variant with R2 > 0.8 from simu‑
lated array (GSA) and downsampled LPS from 0.5 × to 7.0 × across each 
frequency bins. The x-axis represents non-reference allele frequency (AF) 
of East Asian population derived from the gnomAD v3.1. The y-axis is the 
number of variants in log scale.

Additional file 5: Figure S5. Comparison of imputation approach using 
20 PD-associated SNPs. Red indicates imputation using GLIMPSE, and 
green indicates haplotype phasing using Eagle v2.4 and Minimac4 for 
imputation. a, Pearson’s correlation coefficient (R2) and b, Non-reference 
discordance rate.

Additional file 6: Figure S6. Distribution of aligned read per genotype of 
downsampled WGS of 188 individuals. The x-axis represents the number 
of read counts aligned to the genotypes. The y-axis represents a fraction of 
genotypes from downsampled WGS of 188 individuals.

Additional file 7: Figure S7. AUC of 5 different PRS sets at each P value 
threshold. After LD clump, multiple P value thresholds were set to assess 
AUC values. The x-axis represents significance thresholds from 5.00 × 10–2 
to 1.00 × 10–20, and the y-axis represent AUC.

Additional file 8: Figure S8. Assessment of PRS models based on SNP 
sets from GWAS in European and East Asian populations using LPS. Evalu‑
ation of 5 different PRS models using 4 different PRS approaches based on 
data of GSA followed by imputation. The x-axis presents PRS models: UK 
Biobank G20; GWAS summary statistics of PD from the UK Biobank study 
of European populations, EUR total; 74 previously identified PD-associated 
SNPs in European populations, EAS; 11 genome-wide significant SNPs 
in a meta-GWAS of East Asians (P < 5.00 × 10–8), EUR replicated; 9 SNPs 
in EUR total that were replicated in a meta-GWAS (P < 1.00 × 10–5), and 
Combined; 16 SNPs of EAS and EUR replicated that were LD clumped. A 
total of 4 different approaches for PRS calculations were used: unadjusted, 
P + T, PRScs, and EB-PRS. The area under curve (AUC) with 95% confidence 
intervals is shown in the y-axis.

Additional file 9: Figure S9. Density plots using 16 PD-associated SNPs 
from LPS data. Green color represents density for cases, and pink color 
represents for control. The x-axis represents polygenic risk score, and the 
y-axis represents density of samples.
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Additional file 10: Figure S10. AUC of PRS analysis. Genotype imputation 
was conducted using the NARD reference panel by GLIMPSE. a PRS calcu‑
lated based on 11 Asian SNPs, b PRS calculated based on nine European 
SNPs that were replicated in East Asian cohorts.

Additional file 11: Figure S11. Correlation of PRS between GSA and LPS. 
a using 11 Asian SNPs, b using nine European SNPs that were replicated in 
East Asian cohorts.
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