353 research outputs found
Microscopic Surface Structure of Liquid Alkali Metals
We report an x-ray scattering study of the microscopic structure of the
surface of a liquid alkali metal. The bulk liquid structure factor of the
eutectic K67Na33 alloy is characteristic of an ideal mixture, and so shares the
properties of an elemental liquid alkali metal. Analysis of off-specular
diffuse scattering and specular x-ray reflectivity shows that the surface
roughness of the K-Na alloy follows simple capillary wave behavior with a
surface structure factor indicative of surface induced layering. Comparison of
thelow-angle tail of the K67Na33 surface structure factor with the one measured
for liquid Ga and In previously suggests that layering is less pronounced in
alkali metals. Controlled exposure of the liquid to H2 and O2 gas does not
affect the surface structure, indicating that oxide and hydride are not stable
at the liquid surface under these experimental conditions.Comment: 12 pages, 3 figures, published in Phys. Rev.
Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview
Here, we review the basic concepts and applications of the
phase-field-crystal (PFC) method, which is one of the latest simulation
methodologies in materials science for problems, where atomic- and microscales
are tightly coupled. The PFC method operates on atomic length and diffusive
time scales, and thus constitutes a computationally efficient alternative to
molecular simulation methods. Its intense development in materials science
started fairly recently following the work by Elder et al. [Phys. Rev. Lett. 88
(2002), p. 245701]. Since these initial studies, dynamical density functional
theory and thermodynamic concepts have been linked to the PFC approach to serve
as further theoretical fundaments for the latter. In this review, we summarize
these methodological development steps as well as the most important
applications of the PFC method with a special focus on the interaction of
development steps taken in hard and soft matter physics, respectively. Doing
so, we hope to present today's state of the art in PFC modelling as well as the
potential, which might still arise from this method in physics and materials
science in the nearby future.Comment: 95 pages, 48 figure
Hydrogen bond directed molecular recognition in water in a strapped-porphyrin-cyclodextrin assembly
A water soluble, phenanthroline-strapped zinc porphyrin bearing four arylsulfonate groups formed a stable host–guest complex with two per-O-methylated β-cyclodextrin cavities. In the host–guest assembly, the zinc porphyrin was capable of binding imidazole within the cavity between the zinc(II) ion and the phenanthroline strap in an aqueous medium. The formation of a hydrogen bond between the imidazole NH and the nitrogen atoms of the phenanthroline was an essential element of the binding event, as shown by comparative binding studies with a non-strapped tetrasulfonated zinc porphyrin and with N-methylimidazole. This hydrogen bonding in an aqueous medium was possible due to the protected hydrophobic environment created by the cyclodextrins around the phenanthroline strap. This type of binding event may provide a biomimetic approach to study water soluble heme protein models
Hemobilia caused by a ruptured hepatic cyst: a case report
<p>Abstract</p> <p>Introduction</p> <p>Hemobilia is a rare cause of upper gastrointestinal bleeding. More than 50% of hemobilia cases are related to iatrogenic trauma from hepatobiliary procedures, and needle biopsy of the liver represents the most common cause. A minority of hemobilia cases are due to hepatobiliary disorders such as cholangitis, hepatobiliary cancers, choledocholithiasis, and vascular abnormalities in the liver. The classic presentation of hemobilia is the triad of right upper quadrant (biliary) pain, obstructive jaundice, and upper gastrointestinal bleeding. We report a rare case of hemobilia caused by a spontaneous hepatic cyst rupture, where our patient presented without the classical symptoms, in the absence of therapeutic or pathological coagulopathy, and in the absence of spontaneous or iatrogenic trauma.</p> <p>Case presentation</p> <p>A 91-year-old African-American woman was referred to our out-patient gastroenterology clinic for evaluation of mild epigastric pain and intermittent melena. An abdominal computed tomography scan was remarkable for multiple hepatic cysts. Esophagogastroduodenoscopy revealed multiple blood clots at the ampulla of Vater. Endoscopic retrograde cholangiopancreatography showed a single 18 mm-sized filling defect in the common hepatic duct wall at the junction of the right and left hepatic duct, adjacent to one of the hepatic cysts. The ruptured hepatic cyst communicated to the bile ducts and was the cause of hemobilia with an atypical clinical presentation.</p> <p>Conclusion</p> <p>Hemobilia is an infrequent cause of upper gastrointestinal bleeding and rarely occurs due to hepatic cyst rupture. To the best of our knowledge, this is only the second case report in the literature that describes hemobilia due to hepatic cyst rupture. However, it is the first case in the literature of hemobilia due to hepatic cyst rupture in the absence of iatrogenic or spontaneous trauma, and in the absence of a spontaneous or pathological coagulopathy.</p
Microscopic dynamics in liquid metals: the experimental point of view
The experimental results relevant for the understanding of the microscopic
dynamics in liquid metals are reviewed, with special regards to the ones
achieved in the last two decades. Inelastic Neutron Scattering played a major
role since the development of neutron facilities in the sixties. The last ten
years, however, saw the development of third generation radiation sources,
which opened the possibility of performing Inelastic Scattering with X rays,
thus disclosing previously unaccessible energy-momentum regions. The purely
coherent response of X rays, moreover, combined with the mixed
coherent/incoherent response typical of neutron scattering, provides enormous
potentialities to disentangle aspects related to the collectivity of motion
from the single particle dynamics.
If the last twenty years saw major experimental developments, on the
theoretical side fresh ideas came up to the side of the most traditional and
established theories. Beside the raw experimental results, therefore, we review
models and theoretical approaches for the description of microscopic dynamics
over different length-scales, from the hydrodynamic region down to the single
particle regime, walking the perilous and sometimes uncharted path of the
generalized hydrodynamics extension. Approaches peculiar of conductive systems,
based on the ionic plasma theory, are also considered, as well as kinetic and
mode coupling theory applied to hard sphere systems, which turn out to mimic
with remarkable detail the atomic dynamics of liquid metals. Finally, cutting
edges issues and open problems, such as the ultimate origin of the anomalous
acoustic dispersion or the relevance of transport properties of a conductive
systems in ruling the ionic dynamic structure factor are discussed.Comment: 53 pages, 41 figures, to appear in "The Review of Modern Physics".
Tentatively scheduled for July issu
Body distribution of 11C-methionine and 18FDG in rat measured by microPET
Compounds 18F-fluorodeoxyglucose (18FDG) and 11C-methionine (11C-MET) are radiodiagnostics frequently used in clinical Positron Emission Tomography (PET) as well in preclinical studies of various pathologies. The present study was focused on the comparison of biodistribution of both radiotracers in intact Wistar rats. The animals were scanned by microPET twice. The first scanning was done after 11C-MET administration, the second scan followed 5–7 days later using 18FDG. The radiotracers were injected into the tail vein of animals in isoflurane anesthesia. After a redistribution period, whole body scans were obtained using eXplore Vista SrT GE tomograph. Accumulation of the drugs in tissues was expressed in relative values (% ID/g) in selected regions of interest. As arbitrary reference tissue for drug accumulation, the sternoclavicular area was used. 18C-MET was found remarkably cumulating especially in the liver, spleen and distal part of the gastrointestinal tract. The compound was accumulated in the liver 6.9±0.92 (mean±SEM) times more intensively than in the reference tissue. The respective value for spleen and cecum/colon was 5.62±0.81 and 3.56±0.14 times. Accumulation of 11C-MET in other body parts including the brain and heart was very low and was apparently equal to the arbitrary tissue (0.13±0.01% ID/g). In the same animals 18FDG (biontFDG) was remarkably cumulated especially in Harderian glands compared to arbitrary tissue background (11.02±1.00 times), heart (7.52±1.70 times), brain (6.14±0.37 times), and colon (5.68±0.31 times). 18FDG accumulation in the liver, spleen and other organs was apparently not different from that found in the background (0.14±0.02% ID/g). The data obtained may serve as reference values in further microPET preclinical studies with 11C-MET and 18FDG under the given conditions
Aggregatibacter actinomycetemcomitans Omp29 Is Associated with Bacterial Entry to Gingival Epithelial Cells by F-Actin Rearrangement
The onset and progressive pathogenesis of periodontal disease is thought to be initiated by the entry of Aggregatibacter actinomycetemcomitans (Aa) into periodontal tissue, especially gingival epithelium. Nonetheless, the mechanism underlying such bacterial entry remains to be clarified. Therefore, this study aimed to investigate the possible role of Aa outer membrane protein 29 kD (Omp29), a homologue of E. coli OmpA, in promoting bacterial entry into gingival epithelial cells. To accomplish this, Omp29 expression vector was incorporated in an OmpA-deficient mutant of E. coli. Omp29+/OmpA− E. coli demonstrated 22-fold higher entry into human gingival epithelial line cells (OBA9) than Omp29−/OmpA− E. coli. While the entry of Aa and Omp29+/OmpA− E. coli into OBA9 cells were inhibited by anti-Omp29 antibody, their adherence to OBA9 cells was not inhibited. Stimulation of OBA9 cells with purified Omp29 increased the phosphorylation of focal adhesion kinase (FAK), a pivotal cell-signaling molecule that can up-regulate actin rearrangement. Furthermore, Omp29 increased the formation of F-actin in OBA9 cells. The internalization of Omp29-coated beads and the entry of Aa into OBA9 were partially inhibited by treatment with PI3-kinase inhibitor (Wortmannin) and Rho GTPases inhibitor (EDIN), both known to convey FAK-signaling to actin-rearrangement. These results suggest that Omp29 is associated with the entry of Aa into gingival epithelial cells by up-regulating F-actin rearrangement via the FAK signaling pathway
- …