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Abstract

The hard sphere model for liquids attempts to capture the physical behavior of a real liquid in a simple conceptual
model: a fluid of fixed size spheres that only interact repulsively when they come into contact. Is the model good
enough to use for modeling internal planetary structure? To answer this question, I survey variants of hard sphere
liquid theory by applying them to the Earth’s outer core to determine which of them explains wavespeeds in the
outer core best. The variants explored here are the Carnahan-Starling hard sphere model, the Mansoori-Canfield
extension to hard sphere mixtures, the transition metal hard sphere liquid, and the Lennard-Jones hard sphere liquid
with attractive forces. With an empirical addition of a temperature dependence to the liquid’s hard sphere diameter,
all of the variants explored can replicate wavespeeds in most of the radius range of the outer core. The hard sphere
model for liquid transition metals explains the wavespeed best because it yields a mean liquid atomic weight of 48.8
g mol−1 at 10 wt% light element abundance in the core which is in good cosmochemical agreement with core light
element models. Other variants also fit core wavespeeds but require implausibly low liquid mean atomic weight
implying excessive incorporation of hydrogen or helium in the core. Applied to the detailed wavespeed structure of
the Earth’s outermost outer core, the model suggests that the mean atomic weight could be reduced by up to 1.74%
or the temperature could be increased by up to 400 K relative to an adiabatic profile, or there could be 8% fewer
valence electrons in the liquid.
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Background
According to PREM (Dziewonski andAnderson 1981), the
outer core appears to be essentially in a state of adiabatic
self-compression, a state representing a convectively well-
mixed and chemically homogeneously material. Birch
(1952) established the link between finite strain theories
of material behavior and the variation of wavespeed along
an adiabat by deriving the dependence of bulk modulus
on pressure, finding it related to the gravitational acceler-
ation (g) and the bulk sound speed derivative with depth
(dV�/dz).
In subsequent decades, physicists developed theories to

describe fluids at high densities. They recognized that the
dominant factors governing the behavior of high-density
fluids were the repulsive interactions between the fluid
constitutents (atoms or molecular species in the liquid)
and the volume that those constitutents occupied in the
liquid - the essential ingredients of the van der Waals
equation of state for gases. A simple model captures these
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features: a fluid of spheres of fixed size that only interact
repulsively when they come into contact (Carnahan and
Starling 1969).
The Earth’s core is not far from this idealization. It

is a liquid metal comprised of iron alloyed with per-
haps 10% by weight of a combination of light elements
(Birch 1952, 1964). Liquid metals are characterized by
a bulk fluid of positively charged ionic cores separated
from their valence electrons that serve to neutralize the
cores’ charges (Hansen and McDonald 2013). Except for
the valence electrons, this picture corresponds fairly well
to a hard sphere fluid. For example, Stevenson (1980) used
hard sphere theory to derive some fairly general proper-
ties of the core’s density and wavespeed dependence on
depth, and Helffrich (2014) used it to estimate diffusion
coefficients in the core.
One motivation for using the hard sphere model is to

estimate seismic wavespeeds in planets whose interior
structure is only roughly known. The basic information
from planetary discovery missions such as MESSENGER
(Smith et al. 2012) typically consists of a mean density
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and rotational moment of inertia. From this, a radial den-
sity model may be obtained (Smith et al. 2012). The radial
density model then allows a hard sphere model to be
applied to the liquid portions of the planet to predict seis-
mic wavespeeds. In this way, preliminary seismic velocity
models may be made to guide future planetary explo-
rationmissions that involve landers whose sensors include
seismometers to determine the planet’s detailed internal
structure (Dehant et al. 2012).
Another motivation for this work is to have a means

to study the wavespeed profile in the Earth’s outer core
directly. Because we know the aggregate elastic properties
of the core quite well through decades of observational
effort, it provides a good discriminator between success-
ful and unsuccessful hard sphere theories. It is not obvious
to the writer that a theory this simple should work at
all. If one is suitable, it can serve as a reference for the
core’s constitution from which changes from an adiabatic,
well-mixed state may be assessed. Wavespeeds lower than
PREM observed at the top and bottom of the outer core
(Helffrich and Kaneshima 2010; Ohtaki et al. 2012; Zou
et al. 2008) are not expected from traditional views of core
behavior (where lower wavespeeds are associated with
higher densities and vice versa), though here I focus only
the top of the core in order to prove the viability of the
approach.

Methods
Data
I use the PREM model (Dziewonski and Anderson 1981)
for values of density (ρ), bulk sound speed (V�), and grav-
ity (g) through the outer core. As a reference model for the
outermost outer core, Tanaka (2007) found that the PREM
travel time predictions for SmKS (the family of arrivals
that travel through the outer core and reflectm − 1 times
from the underside of the core-mantle boundary (CMB))
are the best among more recent radial velocity models,
thus recommending its use. Gravity is not directly param-
eterized by PREM but may be fit with a polynomial form
to radius when integrated from the density profile. The
explicit expression for gravity (m s−2) in the outer core is

g(r) = 2.114073 × 10−3 + 3.818921 × 10−3r − 2.131285
× 10−7r2 ,

(1)

where r is the radius in km. A similar fit to ρ(r) to derive
the pressure leads to a polynomial expression for pressure
(in GPa) of
P(r) = 3.853676 × 102 − 3.083633 × 10−2r − 1.184717

× 10−5r2 ,
(2)

again with radius r in km.

Wavespeeds in the outer core are closely approximated
by adiabatic self-compression (Dziewonski and Anderson
1981). While PREM does not specify a core temperature,
with a CMB reference temperature (T0) it can be projected
down the adiabat using PREM data. Using the relation
T(h) = T0 exp(γ

∫ h
0 g(z)/V�

2(z)dz) (Stacey and Davis
2008), the pressure, density, and temperature at any depth
h below the CMB may be calculated. Alfè et al. (2002)
showed that the Grüneisen parameter γ is virtually con-
stant throughout the core and has the value 1.52 that I use
to calculate normal core temperatures. However, various
shock wave studies and empirical models suggest a range
of 1.3≤γ≤1.8 (Stacey and Davis 2008) so this is also inves-
tigated. I use a CMB temperature of 4,300 K throughout,
except where the explicit thermal wavespeed variation is
explored.

Methods used
There are various flavors of the hard sphere model pro-
posed by different researchers. I focus on two properties
of these models to apply them to the core. Each theoreti-
cal variant has an expression for the compressibility factor
Z = P/(ρRT), essentially providing the equation of state
for the liquid. P (pressure), T (absolute temperature), and
R (the universal gas constant) have their customary mean-
ings, but the density ρ is in moles per unit volume. With
a CMB temperature, all of these can be calculated from
PREM. Z is related through the theory to the hard sphere
diameter σ and thence to the hard sphere packing frac-
tion η = πnσ 3/6. n is the number density, the number of
particles per unit volume, related through the molecular
weight of the liquidM to the PREM density.
The second property is the liquid wavespeed. This is

fixed by the hard sphere packing fraction η and other
free parameters of the particular theory variant. For each
variant I search over the free parameters to determine
the best-fitting set that reproduces PREM wavespeeds
throughout the core. There are usually one or two free
parameters to be searched over, so the best combination is
determined computationally by a relatively undemanding
grid search or line minimization. The following sections
introduce the particular hard sphere theory variants.

Carnahan-Starling hard sphere liquid
The hard sphere model relates the compressibility factor
Z to the hard sphere packing fraction η through a very
simple formula. The best formulation of the hard sphere
equation of state is Carnahan and Starling’s (1969) one,
wherein

Z = (1 + η + η2 − η3)/(1 − η)3 . (3)

Thus if Z is known, η may be solved for (provided Z≥1;
clearly, 0≤η≤1) and σ obtained.
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The hard sphere packing fraction also governs the
wavespeeds in the hard sphere liquid. Rosenfeld (1999)
derived the sound speed c in the hard sphere liquid in
terms of Z (given by (3)), η and the molecular weightM:

c2 = RT
M

[
Z + η

dZ
dη

+ 2
3
Z2

]
. (4)

The only free parameter in this theory is the mean
atomic weight,M.
The expression appears to indicate that cmonotonically

increases with T (and decreases with M), but this is not
true because Z depends on T as well. Plotting c(T)/c(Tm)

(Tm is the melting temperature, defined for a hard sphere
liquid when η = 0.494) in Fig. 1, one sees the surprising
result that c drops with decreasing η (increasing T) but
then rises again as η decreases (T continues to increase).
Thus the dependence onT is not straightforward and cap-
tures the behavior of both a liquid (wavespeed decreases
with T at high η) and a gas (wavespeed increases with T
at low η). For later use, it is helpful to define the quantity
p(η) = (1 + η + η2 − η3)/(1 − η)3 and its derivative with
respect to η, p′(η) = 2(2 + 2η − η2)/(1 − η)4.

Hard sphere liquidmixtures
The core is impure and can be viewed as a liquid mixture
of different alloying elements whose sizes and masses dif-
fer from iron. Mansoori et al. (1971) extended the hard

Fig. 1 Hard sphere liquid properties. Variation of wavespeed in hard
sphere liquid c with hard sphere packing fraction η. The speed is
relative to the value at the melting temperature (Tm), where there is a
phase change in the liquid to solid form (at η = 0.494). While
Equation (4) suggests that the dependence should be monotonic on
temperature (lower η implies lower density thus higher T ), the
co-variation of Z on T leads to the more complex trend depicted.
After Rosenfeld (1999)

sphere liquid model to include mixtures by adding further
terms to the expression for Z:

Z = [(
1 + η + η2

) − 3η(y1 + y2η) − y3η3
]
/(1−η)3 .

(5)

The y1,2,3 terms depend on the mixture properties. If xi
is the mole fraction of component i in the m-component
mixture with

∑m
i=1 xi = 1, then

ηi = π

6
nσ 3

i xi , η =
m∑
i=1

ηi , (6a)

y1 =
m∑

j>i=1
�ij(σi + σj)(σiσj)

−1/2 , (6b)

y2 =
m∑

j>i=1
�ij

m∑
k=1

[
ηk
η

]
(σiσj)1/2

σk
, (6c)

y3 =
[ m∑
i=1

[
ηi
η

]2/3
x1/3i

]3

, (6d)

�ij = [
(ηiηj)

1/2/η
] [

(σi − σj)
2/(σiσj)

]
(xixj)1/2 . (6e)

For a single component liquid, �ii = 0 implying that
y1 = y2 = 0, and y3 = 1, reducing Equation (5) to (3). In
a two-component liquid, the theory’s free parameters are
therefore the size ratio (relative to iron) and mass of the
particle. Assuming a weight percentage of a light element
in the core, these factors determine the mole fractions xi
and the mean atomic weightM in the liquid.

Transitionmetal hard sphere liquids
Yokoyama (2001a) showed that the hard sphere model
could be successfully applied to calculate the sound veloci-
ties in liquid metals at 1 atm close to their melting temper-
atures. This was achieved by modifying Rosenfeld’s (1999)
expression for the wavespeed dependence on packing
fraction to account explicitly for the dependence of hard
sphere diameter on temperature. In addition, Yokoyama
(2001a) recognized that the electronic structure of the
transition metals added a suite of longer-ranged but weak
repulsive forces to the inter-particle interactions in the
liquid. These two factors lead to modifications to the
expression for wavespeeds. Including the hard sphere size
dependence on T changes Equation (4) to

c2= RT
M

[
p(η) + ηp′(η) + 2

3
[
3ηp′(η)(∂ log σ/∂ logT)V

+p(η)
]2 ]

.

(7)
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If (∂ log σ/∂ logT)V = 0, Equation (4) is recovered. The
explicit temperature dependence of σ given by Yokoyama
(2001a) is (∂ log σ/∂ logT)V = −k1

√
T/Tm/(1 − k2√

T/Tm) with constants k1 = 0.0444 and k2 =
0.112. However, for the hard sphere liquid, all proper-
ties should be relatable to η, and the explicit T depen-
dence is only valid at a particular pressure, in this
case 1 atm. Noting that (∂ log σ/∂ logT)V = (T/σ)

(dσ/dη)V (dη/dZ)V (dZ/dT)V , an expression only involv-
ing η may be obtained: (∂ log σ/∂ logT)V = −p(η)/

(3ηp′(η)). Substituting this into (7) eliminates the squared
term and lowers wavespeeds. Rosenfeld (1999) shows
this term is (∂P/∂T)V . Using the Maxwell relation for
V (P,T), (∂P/∂T)V = αKT which, if zero, implies that
the thermal expansivity α is zero - unlikely for the core
or indeed any substance in a planetary interior (Helffrich
and Connolly 2009). Thus the η-only dependence through
Z is unphysical and implies that a viable wavespeed
model must contain factors leading to a nonzero thermal
expansivity.
The electronic contributions to the wavespeed are

an electron-gas energy (arising from the charge-
compensating valence electrons in the liquid), the
electrostatic repulsive energy of the charged ionic cores,
and a s-d orbital hybridization term (BH ) due to the irreg-
ular filling of the d orbitals among the transition metals.
See Shimoji (1977) and Yokoyama (2001b) for a discus-
sion of these terms. BH is essentially a static correction
to Z for a liquid for a particular metallic species (for the
core, iron). Thus

BH =a6m
6

εRyd
[
0.031z + (0.916z4/3+1.8z2)/am−4.42z5/3/a2m

]
− 3kBTm

(
1 + ηm + η2m − η3m

)
/(1 − ηm)3.

(8)

kB is Boltzmann’s constant and εRyd is the Rydberg
energy, 2.1798741 × 10−18 J. am is the hard sphere radius
at melting conditions nondimensionalized by dividing it
by the Bohr length (5.2917725 × 10−11 m), and ηm is the
hard sphere packing fraction at melting (here taken to
be 0.463 in contrast to Rosenfeld’s value). The particular
metal is characterized by a valence electron count z, melt-
ing temperature Tm and melting density ρm (and number
density nm) defining the hard sphere radius through ηm =
4/3πa3mnm. For iron, the valence in the liquid metal state
is z = 1.33 (Yokoyama 2001a).
Incorporating the electron gas (ueg) and the ion repul-

sion (uion) contributions to the compressibility factor
allows the hard sphere packing fraction η and Wigner-
Seitz radius a to be determined. ueg, uion, and BH all serve
to increase the effective Z, given by

Z = −
[
εRyd

[
0.031z + (

0.916z4/3 + 1.8z2
)
/a − 4.42z5/3/a2

] − 6BH/a6
]

/(3kBT) + (
1 + η + η2 − η3

)
/(1 − η)3 .

(9)

With η (and a, again in multiples of the Bohr radius)
obtained, the liquid metal wavespeed, incorporating (7), is

c2 =RT
M

[
(εRyd[ueg + uion]+BH/a6)/(kBT) + p(η) + ηp′(η)

+2
3

[
3ηp′(η)(∂ log σ/∂ logT)V + p(η)

]2] ,

(10)

with ueg = −0.031z/3 − (4/9)(0.916z4/3 + 1.8z2)/a and
uion = (22.1/9)z5/3/a2. The electronic terms serve to
raise wavespeeds relative to liquid without charge inter-
actions both by increasing η for a given Z and by adding
charge-related terms (ueg, uion, and BH ) to (7). Within
this theoretical framework for a particular metal, the free
parameters governing liquid speed are valence electron
count z and mean atomic weightM.

The Lennard-Jones hard sphere liquid with attractive forces
A characteristic property of any liquid is its tendency to
cohere and to maintain a fixed volume in the absence
of confinement. A simple way to parameterize this is by
defining an intermolecular potential based on separation
r, u(r), whose gradient entails both repulsive and attrac-
tive forces. The Lennard-Jones potential is a common one
used for this parameterization, given by

u(r) = 4ε
[
(σ/r)12 − (σ/r)6

]
(11)

(Fig. 2). ε is an interaction energy and σ is a length scale
called the collision diameter. There are various ways to
incorporate an interaction potential into a liquid theory,
but for simplicity I choose Kolafa and Nezbeda’s (1994)
parameterization based on the Barker and Henderson
(1976) recipe for determining hard sphere size in the
liquid. Again, the hard sphere diameter is chosen by
matching Z, given in this theory by

Z = p(η)+ρ∗(1−2γρ∗) exp(−γ ρ∗2)�B2(T)+f (T , ρ∗) .
(12)

ρ∗ = nσ 3 is the reduced number density, and η =
πρ∗/6. Kolafa andNezbeda (1994) give polynomial expan-
sions in powers of T1/2 and logT for �B2(T) and addi-
tionally powers of ρ∗ for f (T , ρ∗). γ = 1.9290728
is an empirical fitting constant. The liquid wavespeed
is given by Equation (7), with dZ/dη (= p′(η)) and
(∂ log σ/∂ logT)V evaluated numerically. Thus the free
parameters in the method are the Lennard-Jones energy
scale ε andM, the mean atomic weight of the liquid.
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Fig. 2 Lennard-Jones potential. Lennard-Jones potential with ε = 5.
The potential scale governs the depth of the well at the minimum
r/σ = 21/6, beyond which the force between liquid constitutents is
attractive. The function tends to zero at infinite separation and to
infinitely strong repulsion at zero separation

Results
Carnahan-Starling hard sphere liquid
The only free parameter in this theory is the molecular
weight of the liquid. The seismic wavespeed is calcu-
lated with Equation (4). Minimizing the misfit to PREM
wavespeeds by varying M leads to a best-fit M =
6.1 g mol−1. The comparison with PREM (Fig. 3) shows
the fit not only to be poor but leads to an unreasonably low
molecular weight for the core. The model is evidently too
simple to be a realistic description for the Earth. Equation
(7) is an alternative expression for the hard sphere liquid
wavespeed when there is an explicit temperature depen-
dence to σ . If in the spirit of the hard sphere model this
dependence is parameterized in terms of η, then a satis-
factory fit may be obtained. However, parameterizations
in η lead to dc/dT > 0 which is unphysical for the larger
η values found in the core (Fig. 1). To avoid this I param-
eterize the correction in powers of

√
T as did Protopapas

et al. (1973). The explicit form for the correction is in
rational polynomial form, parameterized with numerator
and denominator coefficients ci and di:

(∂ log σ/∂ logT)V = (c0+c1
√
T+c2T)/(1+d1

√
T+d2T)

(13)

(Figure 3). This correction is entirely an expedient tac-
tic whose coefficient estimates come from fitting velocity

Fig. 3 Hard sphere liquid performance. Optimized hard sphere liquid
wavespeeds for the Carnahan-Starling model compared with PREM.
The best-fit to PREM, using Equation (4) for the wavespeed, is for a
liquid atomic weight ofM = 6.1 g mol−1. If (∂ log σ/∂ log T)V is used
with Equation (7) for the wavespeed, a much better fit results virtually
overlying PREM. Equation (13) parameterizes (∂ log σ/∂ log T)V with
(c0, c1, c2) = (−1.170076× 10−1, 3.297547× 10−3, 2.274412× 10−5)

and (d1, d2) = (−0.0294468508, 0.0002102121). The lines paralleling
PREM show the wavespeeds for ±200 K change in Tcmb. Dotted lines
show result of varying γ through the range shown. The result is similar
to varying Tcmb and a corresponding change to (∂ log σ/∂ log T)V

residuals when M = 15 g mol−1 to (13). It shows how
good a hard sphere model can be if it can properly predict
this dependence, however.
The applicability of the Carnahan-Starling (CS) liquid

model to the core is severely limited. Fig. 4 depicts those
limits, which derive from the liquid’s molecular weight.
Only low molecular weight liquids (M < 20 g mol−1) are
admissible throughout the core.

Hard sphere liquid mixtures
The free parameters in this model are the mass ratio and
the radius ratio with respect to iron (at a fixed 10 wt%
light element). A light element mass m at a fixed weight
percent in the core fixes the mole fraction and thus M
for the bulk liquid. A grid search over 1≤m≤56 and ratio
0.2≤r≤1 (corresponding to a range of element radii from
He through H to Fe (Cordero et al. 2008)) yields a best-
fit to PREM with r = 0.25 and m = 1.45 g mol−1. Fig. 5
shows the resulting fit, which is poor at the base of the
core when η approaches freezing conditions for the hard
sphere liquid. This model suggests that the core’s light ele-
ment is dominantly hydrogen, surprisingly affirmed by the
radius ratio for H/Fe: 0.31/1.32 = 0.235 (Cordero et al.
2008).
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Fig. 4 Limits to hard sphere model. Limits to Carnahan-Starling (CS)
hard sphere model. This diagram shows the upper limit (solid lines)
for η in the core for the liquid wavespeed to be described by a
real-valued (∂ log σ/∂ log T)V labeled at right with the mean atomic
weight for the liquid (M). The dashed lines show values for η for the
CS hard sphere liquid obtained for compressibility factor Z calculated
for PREM with CMB temperature Tcmb = 4,300 K with the labeledM at
the left. At the sameM, a crossing of the lines indicates an infeasible
combination for the core. For anyM≥20 g mol−1, no CS liquid is
feasible; if Tcmb = 5,300 K, the feasibleM rises slightly to about 25
g mol−1. Dashed line at η = 0.494 indicates hard sphere freezing and
at η = 0.704 indicates the hard sphere packing fraction for an
hexagonally closest packed solid

Transition metal hard sphere liquids
The free parameters in this model are the number of
valence electrons z and the liquid molar mass M. The
grid search is over 1≤z≤2.5 and 1≤M≤56. The best-fit
combination is z = 1.649 and M = 48.8 g mol−1. z is
slightly higher than the 1 atm value at melting (z = 1.33).
Fig. 6 shows that the model liquid properties closely fol-
low PREM through straight application of the theory.
The average deviation from PREM throughout the core
is 0.27%; this is only slightly larger than the approxi-
mately 0.25% wavespeed deviations found at the top of
the outer core (Helffrich and Kaneshima 2010; Kaneshima
and Helffrich 2013). It is possible to improve the fit by
allowing a radial dependence for z and M, but I defer
this to the discussion of this particular model’s adjust-
ment to decrease speeds at the top of the core. This theory
prescribes only a weak temperature dependence for the
wavespeeds.

The Lennard-Jones hard sphere liquidwith attractive forces
The free parameters in this model are the energy scale
ε and the liquid molar mass M. A grid search over the
typical 1≤M≤56 and 1 K≤ε/kB≤5, 000 K allows for two

Fig. 5 Hard sphere mixture liquid performance. Best-fitting hard
sphere mixture at 10 wt% light element compared to PREM. The
second hard sphere component has radius ratio r = 0.25 and
molecular weightm = 1.45 g mol−1. The standard theory (with
(∂ log σ/∂ log T)V calculated numerically - ‘theor. mix’) fits PREM
poorly. An empirical correction (‘corr. mix’) added to (∂ log σ/∂ log T)V
with (c0, c1, c2) = (−1.059965, 4.244515, −4.246083) and (d1, d2) =
(−8.158507, 12.285397) improves the fit in the shallow core but
diverges in the deeper core at packing fractions approaching hard
sphere freezing. Dotted lines show result of varying γ through the
range shown. The result is similar to varying Tcmb and a corresponding
change to (∂ log σ/∂ log T)V

Fig. 6 Hard sphere metallic liquid performance. Plot of best-fitting
Yokoyama hard sphere metallic liquid compared to PREM. The center
line is for the Tcmb reported and ±200 K perturbations. For this model,
the temperature dependence of the hard sphere liquid wavespeeds
is low. The variation with γ is within the ±200 K bounds and is not
shown for clarity
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solutions. The first is a low- ε solution with ε/kB = 20
K and M = 6.1 g mol−1. ε is so small that this is effec-
tively no attraction at all at core temperatures, and is
similar to the unmodified CS hard sphere model. The
other solution has strong attractive forces with ε/kB =
2,460 K andM = 6.5 g mol−1. The comparison to PREM is
shown in Fig. 7. The mean deviation from PREM is 0.84%,
but the radial trend is much flatter than PREM. This is
a poor fit with the unmodified theory, but an empirical
temperature-dependent correction can improve it in the
shallower parts of the outer core.

Discussion
With approximate fits of each model to the core’s struc-
ture, we can ask what perturbations to it will approx-
imate the observed wavespeed reductions from PREM.
Fig. 8 shows the perturbations to individual models.
The models, for comparison, are KHOCQ (Helffrich and
Kaneshima 2010) and KHOMC (Kaneshima and Helffrich
2013). They deviate from PREM in the topmost approx-
imately 350 km of the outer core by approximately
0.25%.

The hard sphere model
The simplest model to evaluate is the hard sphere model
(Fig. 1a). The only adjustable parameter in the theory is
the mass M of the particle. Additionally, the temperature
may be varied to allow conditions to deviate from adia-
batic. The variation of each of these is shown in Fig. 8
by two virtually coincident lines deviating from the fit-
ted model (see Fig. 3) in the topmost 375 km of the core.
One case shows an increasingly subadiabatic (hotter) tem-
peratures reaching about 17 K higher than the adiabat.
This is a surprisingly small value but suggests that the
heat flux would not be significantly reduced down the
adiabat: by only approximately 4%. Alternatively, only a
2% decrease in density of the core material is needed to
reduce the wavespeeds there. The mass and temperature
perturbations are both approximately linear, so any linear
combination of mass and temperature within these limits
could also serve.
However, the reduction is from M = 15 g mol−1, an

already extremely light core. For this M to represent a 10
wt% light element mix, the light element mass would be
a combination of H+He and the concentration would be
around 79 mol%. This is quite a large amount of hydrogen

Fig. 7 Lennard-Jones model performance. Plot of best-fitting Lennard-Jones hard sphere liquid compared to PREM. The dotted line (‘theory’) is the
fit to the unmodified theory with ε/kB = 2640 K andM = 6.5 g mol−1. The solid lines show an augmented model with a temperature dependent
correction to (∂ log σ/∂ log T)V with (c0, c1, c2) = (−7.928909 × 10−2, 1.887171 × 10−3, −1.108079 × 10−5) and (d1, d2) = (−3.06458231 × 10−2,
2.259932 × 10−4) in addition to the numerical differentiation of σ . The center line is for the reported Tcmb and ±200 K perturbations. PREM is
effectively overlaid by the center solid line. Dotted lines show result of varying γ through the range shown. The result is similar to varying Tcmb and a
corresponding change to (∂ log σ/∂ log T)V
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Fig. 8Model comparisons to observed wavespeeds at top of outer core. Perturbations to variants of the hard sphere model compared to observed
perturbations to PREM (KHOCQ and KHOMC) at the top of the outer core. (a) Hard sphere model; (b) hard sphere mixture; (c) transition metal hard
sphere liquid; (d) Lennard-Jones hard sphere liquid attractive forces. Seismic models are KHOCQ and KHOMC (Helffrich and Kaneshima 2010;
Kaneshima and Helffrich 2013) (solid lines). Dashed lines show various perturbations to the models that approximate seismic models: temperature
deviations from adiabatic (dotted lines in (a-d)), mean atomic weight (dashed lines in (a-d)), radius ratio (dashed lines in (b)), valence electron count
(dashed lines in (c)), ε/k (dashed lines in (d))

and helium given the expected core composition based on
chondritic element abundances (Allègre et al. 1995), leav-
ing no possibility of others whose presence is more likely
on cosmochemical grounds.

The hard sphere mixture
The adjustable parameters in this model are radius and
mass ratio relative to iron, and temperature. A hard
sphere mixture is subject to an even smaller amount

of subadiabatic temperature increase than a single-
component hard sphere fluid, only about 10 K. The
wavespeed decrease could also arise by a 3% increase in
radius ratio relative to the reference ratio, 0.25, or an
increase to 0.2575. Based on covalent radii for light ele-
ments, this represents a species change to Na or Mg
among period 3 elements or Cr and Mn in period 4
elements: all others are significantly larger or smaller
(Cordero et al. 2008). The mass must decrease, however,
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by about 1%, restricting the elements to Cr or Mn. The
variations are again nearly linear, so linear combina-
tions of any three of the factors could work to reduce
wavespeeds in the core. However, the lowm also suggests
that the core is dominantly an H+He mix, unlikely for
cosmochemical reasons as before.

The transition metal hard sphere liquid
This is the most intriguing of the models because it is
a very good description of outer core wavespeeds all by
itself (Fig. 6). The adjustable parameters are the M and
z, along with T . The best-fitting values unfortunately
yield the largest differences to PREM at both the top and
base of the core, where the structural variations are most
interesting. The basic model (Equation (10)) is therefore
perturbed to minimize the difference to PREM by adding
a radius dependence to the valence electron number δz to
fit PREM, given by

δz(h) =
{

c0+c1h+c2h2+c3h3
1+d1h+d2h2

, h > 400
a0+a1h
1+b1h , h≤400

(14)

with (c0, c1, c2, c3) = (−9.402105 × 10−2 , 7.577652 ×
10−4 , −1.62307 × 10−6 , 1.039725 × 10−9), (d1, d2) =
(−3.455461 × 10−3 , 5.173742 × 10−6) and (a0, a1) =
(−0.0958702639, 0.0005057239) and b1 = 0.004435071 (h
is in km in these expressions). This is admittedly overfit-
ting PREM, but it leads to a simple, linear perturbation to
the layer density in the outermost core shown in Fig. 9.
The M decrease along with an adiabat is about 1.74%. At
the same time, the valence electronic charge z decreases
by 8% from 1.686 to 1.553. An unchanged z and M
requires much higher temperatures to slow the layer due
to the weak theoretical temperature dependence (Fig. 9):
the topmost core is virtually 400 K hotter than the projec-
tion of a 4,300 K adiabat from 400 km deep in the core.
This means that there is only a 5 K temperature drop
throughout the topmost 400 km of the core. Hence there
would be a low core heat flux, only 1.2% of the adiabatic
one. This could contribute to solving the paradox of the
young inner core age compared to the oldest recorded
magnetic field (Gomi et al. 2013; Labrosse et al. 2001).
The model, moreover, provides a sensible atomic mass

for the core liquid, 48.8 g mol−1. If this represents a 10

Fig. 9 Summary of perturbations to conditions at top of outer core. Perturbations to conditions at the top of the core to approximately fit the
observed velocity perturbations to PREM for various hard sphere model variants: straight hard sphere (HS), hard sphere mixture (HSmix), a hard
sphere liquid with electronic structure (HStm), and a hard sphere liquid with attractive forces (HSLJ). Changes to temperature (�T ), hard sphere
diameter (�σ ), density (�M), valence electron charge (�z), or interaction potential (�ε) are shown. �T is the temperature difference relative to the
adiabatic temperature at the depth below the CMB. The other perturbations to σ ,M, z, or ε are to the reference value yielding PREM (Figs. 3, 5, 6 and
7). Most hard sphere variants require only percent-level changes to intrinsic parameters or few-K changes to temperature to reduce wavespeeds at
the top of the core, except for the transition metal hard sphere liquid
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wt% light element mix with iron, it maps into about a 20
mol% mixture of an element whose atomic mass is about
25 g mol−1. This puts it squarely in the range between C,
N, O (on the light side - 12 to 16 g mol−1) and Si and S
(on the heavy side - 28 to 32 g mol−1). Thus it is cosmo-
chemically plausible for a quasi-chondritic Earth model.
Allègre et al. (1995) suggest that there are 7.35 wt% Si, 2.3
wt% S, and 4.1 wt% O in the core, which, normalized to
an average atomic weight, is 23 g mol−1, close to the value
prescribed by this hard sphere model variant.

The Lennard-Jones hard sphere liquid
The adjustable parameters in this model are the energy
scale ε and the atomic mass M, along with temperature.
There could be a mass decrease of about 3% relative to
the deeper core near the top. Alternatively, there could be
a slight decrease, by 1%, to the energy scale. This would
mean that the alloying element slightly reduces the inter-
molecular attraction between species in the liquid, but it
is difficult to attribute it to any particular element’s intrin-
sic chemical properties such as its position in the periodic
table. Temperature, on the other hand, is only 10 K higher
than the adiabatic gradient, leading to slightly subadia-
batic conditions and a 2.5% lower heat flux than what is
conducted down the adiabat. On the other hand, themean
atomic mass is 6.5 g mol−1, implies that the core’s light
element is pure hydrogen, with a mole fraction of 83%.
This is again in conflict with cosmochemical expectations
for the core’s composition because it excludes any other
element from being in the core (Allègre et al. 1995).

Summary and analysis
Table 1 summarizes the performance of the models ana-
lyzed here. Though all hard sphere model variants may be
made to fit the wavespeeds in the outer core, only one fits
and provides a plausible view of the core from which sen-
sible deviationsmay be explored: the transitionmetal hard
sphere liquid.
The main reason why most variants fail is because hard

sphere models use as a reference state the ideal gas and

add further Virial-like terms in powers of density that cap-
ture more complex interactions between liquid particles.
Dense liquids like the core are quite far from the ideal gas
reference and therefore require many terms before their
behavior can be completely expressed. The Carnahan-
Starling model actually captures Virial coeffients up to
order 9 (Hansen and McDonald 2013), but this is clearly
insufficient (Fig. 3). It serves as the basic reference for all
of the hard sphere variants, so all are limited by the need
for further higher order terms.
The transition metal liquid model recognizes additional

repulsive forces that change the reference model to some-
thing other than an ideal gas. The particles have longer-
ranged repulsive interactions that are essentially electro-
static. These act to increase wavespeeds relative to other
models at a given Z (Equations (7), (9), and (10)). Hence
this model leads to higher liquid mean atomic weights to
counterbalance the additional force contributions and to
match the wavespeeds in the core.

Conclusions
The hard sphere model for liquids may successfully be
applied to the core. The standard versions - a hard sphere
liquid with only repulsive forces, a liquid mixture of hard
spheres, and a hard sphere liquid with attractive forces
- require the addition of an explicit temperature depen-
dence to the hard sphere diameter, but they can fit the
uppermost outer core well. Among these, the mixed-
sphere liquid performs worst near the base of the core
where packing fractions are highest. All, however, suf-
fer from the defect that the mean atomic weight of the
core liquid is too low for any cosmochemically plausi-
ble composition because they require so much hydrogen
and helium match core wavespeeds, leaving little room in
the core for the heavier light elements that have sensible
cosmochemical constraints (Allègre et al. 1995).
The best hard sphere model for the core is a transition

metal liquid whose valence electrons form an elec-
tron sea bathing and charge-compensating the spheri-
cal ionic cores. This model yields a surprisingly good

Table 1 Summary of hard sphere model performance reproducing PREM

Model variant Comments Adjustments Plausibility
(symbol)

Carnahan-Starling (HS) dV/dr discrepant Additional explicit thermal expansivity contri-
butions

No. M too small; requires large
amounts of H or He in the core.

Hard sphere mixture
(HSmix)

dV/dr discrepant Additional explicit thermal expansivity contri-
butions, but diverge at high η conditions at
depth

No.M too small.

Transition metal liquid
(HStm)

Average deviation 0.27% from
PREM throughout core

None Yes. M slightly lower than Fe
atomic weight.

Lennard- Jones hard
sphere (HSLJ)

Average deviation 0.84% from
PREM throughout core; dV/dr not
PREM-like

Additional explicit thermal expansivity contri-
butions

No.M too small.
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approximation to PREM wavespeeds throughout the core
with a fixed number of valence electrons and atomic mass
(z = 1.649 andM = 48.8 g mol−1). Tomix 10 wt% of a light
element with iron to yield this atomic mass, that element’s
mass must be about 25 g mol−1. This compares favor-
ably to one estimate of the core’s average light element
mass, 23 g mol−1 (Allègre et al. 1995). Thus onemodel sat-
isfies PREM wavespeed constraints and cosmochemical
constraints on the core.
Using the hard sphere electronic liquid model to exam-

ine the wavespeed deviations from PREM at the top of the
outer core, it appears that a approximately 1.7% decrease
in M at the top of the core (along with an 8% decrease
in valence electrons z) can explain the wavespeed reduc-
tion there. With no change inM or z, a linear temperature
increase over the adiabat of approximately 400 K can also
explain the wavespeed reduction. Therefore, a thermally
and chemically stratified layer at the top of the core is
feasible within the framework of the hard sphere model
within these mass anomaly and temperature limits. Its
success further suggests that the model may, in future,
play an integrated role in thermal histories of the core and
mantle (Hirose et al. 2013; Labrosse et al. 2001).
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