1,594 research outputs found

    Food Ingredients Recognition through Multi-label Learning

    Full text link
    Automatically constructing a food diary that tracks the ingredients consumed can help people follow a healthy diet. We tackle the problem of food ingredients recognition as a multi-label learning problem. We propose a method for adapting a highly performing state of the art CNN in order to act as a multi-label predictor for learning recipes in terms of their list of ingredients. We prove that our model is able to, given a picture, predict its list of ingredients, even if the recipe corresponding to the picture has never been seen by the model. We make public two new datasets suitable for this purpose. Furthermore, we prove that a model trained with a high variability of recipes and ingredients is able to generalize better on new data, and visualize how it specializes each of its neurons to different ingredients.Comment: 8 page

    Effect of Serpentinite Dehydration in Subducting Slabs on Isotopic Diversity in Recycled Oceanic Crust and Its Role in Isotopic Heterogeneity of the Mantle

    Get PDF
    We conducted geochemical modeling of the isotopic evolution of subducted oceanic crust that takes into account the chemical variation produced at mid-ocean ridges and in subduction zones, and examined the suitability of our model for generating the high-μ (HIMU), focal zone (FOZO), and prevalent mantle (PREMA) mantle components. Chemical variation produced at mid-ocean ridges was represented by the chemical compositions of two groups of mid-ocean ridge basalts (depleted and enriched). Chemical variation produced in subduction zones was investigated with pressure-temperature paths of slabs of different ages (governing the physicochemical conditions of element exchanges), as determined using representative subduction zones involving young (hot), intermediate, and old (cold) slabs. The results suggest that dehydration of oceanic crust cannot alone produce isotopic variation beyond the bounds of PREMA compositions. Producing the wider range of isotopic diversity from PREMA to FOZO requires various degrees of element partitioning between subducted oceanic crust and fluids (aqueous or supercritical) released by dehydration of slab serpentinite. The extremely radiogenic Pb isotopic signature of HIMU can only be produced by extensive reaction between subducted oceanic crust and fluids derived from slab serpentinite along the specific geothermal gradient resulting from the relatively slow descent of moderately old slabs. The rarity of such tectonic conditions explains the scarcity of HIMU

    Improved Coulomb Correction Formulae for Bose-Einstein Correlations

    Full text link
    We present improved Coulomb correction formulae for Bose-Einstein correlations including also exchange term and use them to calculate appropriate correction factors for several source functions. It is found that Coulomb correction to the exchange function in the Bose-Einstein correlations cannot be neglected.Comment: LaTex file, 8 pages, hard copies of 6 (multiple) figures available on request to [email protected] or [email protected]

    Some forgotten features of the Bose Einstein Correlations

    Full text link
    Notwithstanding the visible maturity of the subject of Bose-Einstein Correlations (BEC), as witnessed nowadays, we would like to bring to ones attention two points, which apparently did not received attention they deserve: the problem of the choice of the form of C2(Q)C_2(Q) correlation function when effects of partial coherence of the hadronizing source are to be included and the feasibility to model effects of Bose-Einstein statistics, in particular the BEC, by direct numerical simulations.Comment: Talk delivered by G.Wilk at the International Workshop {\it Relativistic Nuclear Physics: from Nuclotron to LHC energies}, Kiev, June 18-22, 2007, Ukraine; misprints correcte

    Spontaneous decay dynamics in atomically doped carbon nanotubes

    Full text link
    We report a strictly non-exponential spontaneous decay dynamics of an excited two-level atom placed inside or at different distances outside a carbon nanotube (CN). This is the result of strong non-Markovian memory effects arising from the rapid variation of the photonic density of states with frequency near the CN. The system exhibits vacuum-field Rabi oscillations, a principal signature of strong atom-vacuum-field coupling, when the atom is close enough to the nanotube surface and the atomic transition frequency is in the vicinity of the resonance of the photonic density of states. Caused by decreasing the atom-field coupling strength, the non-exponential decay dynamics gives place to the exponential one if the atom moves away from the CN surface. Thus, atom-field coupling and the character of the spontaneous decay dynamics, respectively, may be controlled by changing the distance between the atom and CN surface by means of a proper preparation of atomically doped CNs. This opens routes for new challenging nanophotonics applications of atomically doped CN systems as various sources of coherent light emitted by dopant atoms.Comment: 10 pages, 4 figure

    Analyses of multiplicity distributions with \eta_c and Bose-Einstein correlations at LHC by means of generalized Glauber-Lachs formula

    Full text link
    Using the negative binomial distribution (NBD) and the generalized Glauber-Lachs (GGL) formula, we analyze the data on charged multiplicity distributions with pseudo-rapidity cutoffs \eta_c at 0.9, 2.36, and 7 TeV by ALICE Collaboration and at 0.2, 0.54, and 0.9 TeV by UA5 Collaboration. We confirm that the KNO scaling holds among the multiplicity distributions with \eta_c = 0.5 at \sqrt{s} = 0.2\sim2.36 TeV and estimate the energy dependence of a parameter 1/k in NBD and parameters 1/k and \gamma (the ratio of the average value of the coherent hadrons to that of the chaotic hadrons) in the GGL formula. Using empirical formulae for the parameters 1/k and \gamma in the GGL formula, we predict the multiplicity distributions with \eta_c = 0.5 at 7 and 14 TeV. Data on the 2nd order Bose-Einstein correlations (BEC) at 0.9 TeV by ALICE Collaboration and 0.9 and 2.36 TeV by CMS Collaboration are also analyzed based on the GGL formula. Prediction for the 3rd order BEC at 0.9 and 2.36 TeV are presented. Moreover, the information entropy is discussed

    The Bose-Einstein correlation function C2(Q)C_2(Q) from a Quantum Field Theory point of view

    Full text link
    We show that a recently proposed derivation of Bose-Einstein correlations (BEC) by means of a specific version of thermal Quantum Field Theory (QFT), supplemented by operator-field evolution of the Langevin type, allows for a deeper understanding of the possible coherent behaviour of the emitting source and a clear identification of the origin of the observed shape of the BEC function C2(Q)C_2(Q). Previous conjectures in this matter obtained by other approaches are confirmed and have received complementary explanation.Comment: Some misprints corrected. To be publishe in Phys. Rev.
    corecore