14 research outputs found
A Comparison of Two Ovine Lumbar Intervertebral Disc Injury Models for the Evaluation and Development of Novel Regenerative Therapies
© The Author(s) 2018. Study Design: Large animal research. Objective: Lumbar discectomy is the most commonly performed spinal surgical procedure. We investigated 2 large animal models of lumbar discectomy in order to study the regenerative capacity of mesenchymal stem cells following disc injury. Methods: Twelve adult ewes underwent baseline 3-T magnetic resonance imaging (MRI) followed by lumbar intervertebral disc injury by either drill bit (n = 6) or annulotomy and partial nucleotomy (APN) (n = 6). Necropsies were performed 6 months later. Lumbar spines underwent 3-T and 9.4-T MRI prior to histological, morphological and biochemical analysis. Results: Drill bit-injured (DBI) and APN-injured discs demonstrated increased Pfirrmann grades relative to uninjured controls (P <.005), with no difference between the 2 models. Disc height index loss was greater in the APN group compared with the DBI group (P <.005). Gross morphology injury scores were higher in APN than DBI discs (P <.05) and both were higher than controls (P <.005). Proteoglycan was reduced in the discs of both injury models relative to controls (P <.005), but lower in the APN group (P <.05). Total collagen of the APN group disc regions was higher than DBI and control discs (P <.05). Histology revealed more matrix degeneration, vascular infiltration, and granulation in the APN model. Conclusion: Although both models produced disc degeneration, the APN model better replicated the pathobiology of human discs postdiscectomy. We therefore concluded that the APN model was a more appropriate model for the investigation of the regenerative capacity of mesenchymal stem cells administered postdiscectomy
Recommended from our members
Universal detection of foot and mouth disease virus based on the conserved VP0 protein
Background: Foot and mouth disease virus (FMDV), a member of the picornaviridae that causes vesicular disease in ungulates, has seven serotypes and a large number of strains, making universal detection challenging. The mature virion is made up of 4 structural proteins, virus protein (VP) 1 – VP4, VP1-VP3 of which form the outer surface of the particle and VP4 largely contained within. Prior to mature virion formation VP2 and VP4 occur together as VP0, a structural component of the pre-capsid which, as a result of containing the internal VP4 sequence, is relatively conserved among all strains and serotypes. Detection of VP0 might therefore represent a universal virus marker.
Methods: FMDV virus protein 0 (VP0) was expressed in bacteria as a SUMO fusion protein and the SUMO carrier removed by site specific proteolysis. Rabbit polyvalent sera were generated to the isolated VP0 protein and their reactivity characterised by a number of immunoassays and by epitope mapping on peptide arrays.
Results: The specific VP0 serum recognised a variety of FMDV serotypes, as virus and as virus-like-particles, by a variety of assay formats. Epitope mapping showed the predominant epitopes to occur within the unstructured but highly conserved region of the sequence shared among many serotypes. When immunogold stained VLPs were assessed by TEM analysis they revealed exposure of epitopes on the surface of some particles, consistent with particle breathing hitherto reported for some other picornaviruses but not for FMDV.
Conclusion: A polyvalent serum based on the VP0 protein of FMDV represents a broadly reactive reagent capable of detection of many if not all FMDV isolates. The suggestion of particle breathing obtained with this serum suggests a reconsideration of the FMDV entry mechanism
Headspace analysis of E-cigarette fluids using comprehensive two dimensional GC×GC-TOF-MS reveals the presence of volatile and toxic compounds.
The analysis of electronic cigarrete (E-cigarette) fluids by high performance liquid chromatography or gas chromatography (GC) coupled to mass spectrometry (MS), GC hyphenated to flame-ionisation detection, or nuclear magnetic resonance spectroscopy poses many challenges due to the complex matrix and extremely high number of compounds present. In order to overcome these challenges, this study focused on the detection of the multiple complex compounds classes produced by the pyrolysis of E-cigarette liquids using comprehensive two dimensional gas chromatography (GCxGC) coupled to time of flight (TOF)-MS. Gas samples were prepared by heating E-liquids inside aluminium tins for 5 min. The tins were placed in a sand bath, which was temperature controlled at 200 °C. The samples were collected using thermal desorption tubes connected to volatile organic compound (VOC) sampling pump attached and subsequently analysed using GCxGC-TOF-MS. The greater peak resolution obtained when using GCxGC-TOF-MS allowed to distinguish many toxic compounds and VOCs that could not be detected by the other methods mentioned above. As a result, a comprehensive list of volatile compounds emitted from E-cigarette fluids when heated was established, which might allow a better understanding of potential health effects of vaping. Heating E-liquids to moderate temperature results in the emission of over 1000 volatile compounds of which over 150 are toxic. These compounds are either present in the liquid or can be formed during storage or heating leading to a more complex volatile profile of E-cigarette liquids than previously assumed. The application of GCxGC-TOF-MS allows the elucidation of this profile and therefore a better understanding of possible health implications
Estimation of the storage life of dimethylol urea using non-isothermal accelerated testing
The mechanism and stability of dimethylol urea (DMU) to polycondensation were investigated using thermogravimetric analysis coupled with mass spectroscopy (TG-MS) for evolved gas analysis and a non-isothermal model-free induction period kinetic analysis using three temperature functions; the Arrhenius function and two non-Arrhenian functions. The polycondensation was observed to occur through a two-step process of condensation followed by elimination of formaldehyde during structural rearrangement as has been reported in the literature. The rate equations for each temperature function were evaluated and extrapolated to room (23 °C) and refrigerator (4 °C) temperature to estimate the length of the induction period for the onset of polycondensation for storage life prediction. Based on experience, estimates of the length of the induction periods and, hence, storage life, were most realistically predicted by the non-Arrhenian temperature functions. © Akadémiai Kiadó, Budapest, Hungary 2011
Dimethylsulphoniopropionate (DMSP) and stress response metabolites in three scleractinian corals under short-term hyposalinity stress
Fv/Fm = maximum quantum yield ofphotosystem II DMSP = Dimethylsulphoniopropionate DMSO = dimethylsulphoxide SOD = superoxide dismutase GSx = total glutathion
Mesenchymal progenitor cells primed with pentosan polysulfate promote lumbar intervertebral disc regeneration in an ovine model of microdiscectomy
© 2017 Elsevier Inc. Background Context: Neural compression associated with lumbar disc herniation is usually managed surgically by microdiscectomy. However, 10%–20% of patients re-present with debilitating back pain, and approximately 15% require further surgery. Purpose: Using an ovine model of microdiscectomy, the present study investigated the relative potential of pentosan polysulfate-primed mesenchymal progenitor cells (pMPCs) or MPC alone implanted into the lesion site to facilitate disc recovery. Study Design: An ovine model of lumbar microdiscectomy was used to compare the relative outcomes of administering MPCs or pMPCs to the injury site postsurgery. Methods: At baseline 3T magnetic resonance imaging (MRI) of 18 adult ewes was undertaken followed by annular microdiscectomy at two lumbar disc levels. Sheep were randomized into three groups (n=6). The injured controls received no further treatment. Defects of the treated groups were implanted with a collagen sponge and MPC (5×105 cells) or pMPC (5×105 cells). After 6 months, 3T MRI and standard radiography were performed. Spinal columns were dissected, individual lumbar discs were sectioned horizontally, and nucleus pulposus (NP) and annulus fibrosus (AF) regions were assessed morphologically and histologically. The NP and AF tissues were dissected into six regions and analyzed biochemically for their proteoglycans (PGs), collagen, and DNA content. Results: Both the MPC- and pMPC-injected groups exhibited less reduction in disc height (p<.05) and lower Pfirrmann grades (p≤.001) compared with the untreated injury controls, but morphologic scores for the pMPC-injected discs were lower (p<.05). The PG content of the AF injury site region (AF1) of pMPC discs was higher than MPC and injury control AF1 (p<.05). At the AF1 and contralateral AF2 regions, the DNA content of pMPC discs was significantly lower than injured control discs and MPC-injected discs. Histologic and birefringent microscopy revealed increased structural organization and reduced degeneration in pMPC discs compared with MPC and the injured controls. Conclusions: In an ovine model 6 months after administration of pMPCs to the injury site disc PG content and matrix organization were improved relative to controls, suggesting pMPCs’ potential as a postsurgical adjunct for limiting progression of disc degeneration after microdiscectomy
Generation and characterisation of recombinant FMDV antibodies: Applications for advancing diagnostic and laboratory assays
Foot-and-mouth disease (FMD) affects economically important livestock and is one of the most contagious viral diseases. The most commonly used FMD diagnostic assay is a sandwich ELISA. However, the main disadvantage of this ELISA is that it requires anti-FMD virus (FMDV) serotype-specific antibodies raised in small animals. This problem can be, in part, overcome by using anti-FMDV monoclonal antibodies (MAbs) as detecting reagents. However, the long-term use of MAbs may be problematic and they may need to be replaced. Here we have constructed chimeric antibodies (mouse/rabbit D9) and Fabs (fragment antigen-binding) (mouse/cattle D9) using the Fv (fragment variable) regions of a mouse MAb, D9 (MAb D9), which recognises type O FMDV. The mouse/rabbit D9 chimeric antibody retained the FMDV serotype-specificity of MAb D9 and performed well in a FMDV detection ELISA as well as in routine laboratory assays. Cryo-electron microscopy analysis confirmed engagement with antigenic site 1 and peptide competition studies identified the aspartic acid at residue VP1 147 as a novel component of the D9 epitope. This chimeric expression approach is a simple but effective way to preserve valuable FMDV antibodies, and has the potential for unlimited generation of antibodies and antibody fragments in recombinant systems with the concomitant positive impacts on the 3Rs (Replacement, Reduction and Refinement) principles
Generation and characterisation of recombinant FMDV antibodies: Applications for advancing diagnostic and laboratory assays
Foot-and-mouth disease (FMD) affects economically important livestock and is one of the most contagious viral diseases. The most commonly used FMD diagnostic assay is a sandwich ELISA. However, the main disadvantage of this ELISA is that it requires anti-FMD virus (FMDV) serotype-specific antibodies raised in small animals. This problem can be, in part, overcome by using anti-FMDV monoclonal antibodies (MAbs) as detecting reagents. However, the long-term use of MAbs may be problematic and they may need to be replaced. Here we have constructed chimeric antibodies (mouse/rabbit D9) and Fabs (fragment antigen-binding) (mouse/cattle D9) using the Fv (fragment variable) regions of a mouse MAb, D9 (MAb D9), which recognises type O FMDV. The mouse/rabbit D9 chimeric antibody retained the FMDV serotype-specificity of MAb D9 and performed well in a FMDV detection ELISA as well as in routine laboratory assays. Cryo-electron microscopy analysis confirmed engagement with antigenic site 1 and peptide competition studies identified the aspartic acid at residue VP1 147 as a novel component of the D9 epitope. This chimeric expression approach is a simple but effective way to preserve valuable FMDV antibodies, and has the potential for unlimited generation of antibodies and antibody fragments in recombinant systems with the concomitant positive impacts on the 3Rs (Replacement, Reduction and Refinement) principles