332 research outputs found

    Application of the pressure sensitive paint technique to steady and unsteady flow

    Get PDF
    Pressure sensitive paint is a newly-developed optical measurement technique with which one can get a continuous pressure distribution in much shorter time and lower cost than a conventional pressure tap measurement. However, most of the current pressure sensitive paint applications are restricted to steady pressure measurement at high speeds because of the small signal-to-noise ratio at low speed and a slow response to pressure changes. In the present study, three phases of work have been completed to extend the application of the pressure sensitive paint technique to low-speed testing and to investigate the applicability of the paint technique to unsteady flow. First the measurement system using a commercially available PtOEP/GP-197 pressure sensitive paint was established and applied to impinging jet measurements. An in-situ calibration using only five pressure tap data points was applied and the results showed good repeatability and good agreement with conventional pressure tap measurements on the whole painted area. The overall measurement accuracy in these experiments was found to be within 0.1 psi. The pressure sensitive paint technique was then applied to low-speed wind tunnel tests using a 60 deg delta wing model with leading edge blowing slots. The technical problems encountered in low-speed testing were resolved by using a high grade CCD camera and applying corrections to improve the measurement accuracy. Even at 35 m/s, the paint data not only agreed well with conventional pressure tap measurements but also clearly showed the suction region generated by the leading edge vortices. The vortex breakdown was also detected at alpha=30 deg. It was found that a pressure difference of 0.2 psi was required for a quantitative pressure measurement in this experiment and that temperature control or a parallel temperature measurement is necessary if thermal uniformity does not hold on the model. Finally, the pressure sensitive paint was applied to a periodically changing pressure field with a 12.8s time period. A simple first-order pole model was applied to deal with the phase lag of the paint. The unsteady pressure estimated from the time-changing pressure sensitive paint data agreed well with the pressure transducer data in regions of higher pressure and showed the possibility of extending the technique to unsteady pressure measurements. However, the model still needs further refinement based on the physics of the oxygen diffusion into the paint layer and the oxygen quenching on the paint luminescence

    Prevalence of Masked Hypertension Among US Adults With Nonelevated Clinic Blood Pressure

    Get PDF
    Masked hypertension (MHT), defined as nonelevated blood pressure (BP) in the clinic setting and elevated BP assessed by ambulatory monitoring, is associated with increased risk of target organ damage, cardiovascular disease, and mortality. Currently, no estimate of MHT prevalence exists for the general US population. After pooling data from the Masked Hypertension Study (n = 811), a cross-sectional clinical investigation of systematic differences between clinic BP and ambulatory BP (ABP) in a community sample of employed adults in the New York City metropolitan area (2005-2012), and the National Health and Nutrition Examination Survey (NHANES; 2005-2010; n = 9,316), an ongoing nationally representative US survey, we used multiple imputation to impute ABP-defined hypertension status for NHANES participants and estimate MHT prevalence among the 139 million US adults with nonelevated clinic BP, no history of overt cardiovascular disease, and no use of antihypertensive medication. The estimated US prevalence of MHT in 2005-2010 was 12.3% of the adult population (95% confidence interval: 10.0, 14.5)-approximately 17.1 million persons aged ≥21 years. Consistent with prior research, estimated MHT prevalence was higher among older persons, males, and those with prehypertension or diabetes. To our knowledge, this study provides the first estimate of US MHT prevalence-nearly 1 in 8 adults with nonelevated clinic BP-and suggests that millions of US adults may be misclassified as not having hypertension

    Importance of amino acid composition to improve skin collagen protein synthesis rates in UV-irradiated mice

    Get PDF
    Skin collagen metabolism abnormalities induced by ultraviolet (UV) radiation are the major causes of skin photoaging. It has been shown that the one-time exposure of UV irradiation decreases procollagen mRNA expression in dermis and that chronic UV irradiation decreases collagen amounts and induces wrinkle formation. Amino acids are generally known to regulate protein metabolism. Therefore, we investigated the effects of UV irradiation and various orally administered amino acids on skin collagen synthesis rates. Groups of 4–5 male, 8-week-old HR-1 hairless mice were irradiated with UVB (66 mJ/cm2) twice every other day, then fasted for 16 h. The fractional synthesis rate (FSR; %/h) of skin tropocollagen was evaluated by incorporating l-[ring-2H5]-phenylalanine. We confirmed that the FSR of dermal tropocollagen decreased after UVB irradiation. The FSR of dermal tropocollagen was measured 30 min after a single oral administration of amino acids (1 g/kg) to groups of 5–16 UVB-irradiated mice. Branched-chain amino acids (BCAA, 1.34 ± 0.32), arginine (Arg, 1.66 ± 0.39), glutamine (Gln, 1.75 ± 0.60), and proline (Pro, 1.48 ± 0.26) did not increase the FSR of skin tropocollagen compared with distilled water, which was used as a control (1.56 ± 0.30). However, essential amino acids mixtures (BCAA + Arg + Gln, BCAA + Gln, and BCAA + Pro) significantly increased the FSR (2.07 ± 0.58, 2.04 ± 0.54, 2.01 ± 0.50 and 2.07 ± 0.59, respectively). This result suggests that combinations of BCAA and glutamine or proline are important for restoring dermal collagen protein synthesis impaired by UV irradiation

    Recent cadmium exposure among male partners may affect oocyte fertilization during in vitro fertilization (IVF)

    Get PDF
    We recently reported evidence suggesting associations between urine cadmium concentrations, reflecting long-term exposure, measured in 25 female patients (relative risk = 1.41, P = 0.412) and 15 of their male partners (relative risk = 0.19, P = 0.097) and oocyte fertilization in vitro. Blood cadmium concentrations reflect more recent exposure. We here incorporate those measures into our prior data set and employ multivariable log-binomial regression models to generate hypotheses concerning the relative effects of long-term and recent cadmium exposure on oocyte fertilization in vitro. No association is indicated for blood cadmium from women and oocyte fertilization, adjusted for urine cadmium and creatinine, blood lead and mercury, age, race/ethnicity and cigarette smoking (relative risk = 0.88, P = 0.828). However, we suggest an inverse adjusted association between blood cadmium from men and oocyte fertilization (relative risk = 0.66, P = 0.143). These results suggest that consideration of long-term and recent exposures are both important for assessing the effect of partner cadmium levels on oocyte fertilization in vitro

    Relation between dietary cadmium intake and biomarkers of cadmium exposure in premenopausal women accounting for body iron stores

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cadmium is a widespread environmental pollutant with adverse effects on kidneys and bone, but with insufficiently elucidated public health consequences such as risk of end-stage renal diseases, fractures and cancer. Urinary cadmium is considered a valid biomarker of lifetime kidney accumulation from overall cadmium exposure and thus used in the assessment of cadmium-induced health effects. We aimed to assess the relationship between dietary cadmium intake assessed by analyses of duplicate food portions and cadmium concentrations in urine and blood, taking the toxicokinetics of cadmium into consideration.</p> <p>Methods</p> <p>In a sample of 57 non-smoking Swedish women aged 20-50 years, we assessed Pearson's correlation coefficients between: 1) Dietary intake of cadmium assessed by analyses of cadmium in duplicate food portions collected during four consecutive days and cadmium concentrations in urine, 2) Partial correlations between the duplicate food portions and urinary and blood cadmium concentrations, respectively, and 3) Model-predicted urinary cadmium concentration predicted from the dietary intake using a one-compartment toxicokinetic model (with individual data on age, weight and gastrointestinal cadmium absorption) and urinary cadmium concentration.</p> <p>Results</p> <p>The mean concentration of cadmium in urine was 0.18 (+/- s.d.0.12) μg/g creatinine and the model-predicted urinary cadmium concentration was 0.19 (+/- s.d.0.15) μg/g creatinine. The partial Pearson correlations between analyzed dietary cadmium intake and urinary cadmium or blood concentrations were r = 0.43 and 0.42, respectively. The correlation between diet and urinary cadmium increased to r = 0.54 when using a one-compartment model with individual gastrointestinal cadmium absorption coefficients based on the women's iron status.</p> <p>Conclusions</p> <p>Our results indicate that measured dietary cadmium intake can reasonably well predict biomarkers of both long-term kidney accumulation (urine) and short-term exposure (blood). The predictions are improved when taking data on the iron status into account.</p
    corecore