3 research outputs found

    Tobacco Root Endophytic Arthrobacter Harbors Genomic Features Enabling the Catabolism of Host-Specific Plant Specialized Metabolites

    Get PDF
    Plant roots constitute the primary interface between plants and soilborne microorganisms and harbor microbial communities called the root microbiota. Recent studies have demonstrated a significant contribution of plant specialized metabolites (PSMs) to the assembly of root microbiota. However, the mechanistic and evolutionary details underlying the PSM-mediated microbiota assembly and its contribution to host specificity remain elusive. Here, we show that the bacterial genus Arthrobacter is predominant specifically in the tobacco endosphere and that its enrichment in the tobacco endosphere is partially mediated by a combination of two unrelated classes of tobacco-specific PSMs, santhopine and nicotine. We isolated and sequenced Arthrobacter strains from tobacco roots as well as soils treated with these PSMs and identified genomic features, including but not limited to genes for santhopine and nicotine catabolism, that are associated with the ability to colonize tobacco roots. Phylogenomic and comparative analyses suggest that these genes were gained in multiple independent acquisition events, each of which was possibly triggered by adaptation to particular soil environments. Taken together, our findings illustrate a cooperative role of a combination of PSMs in mediating plant species-specific root bacterial microbiota assembly and suggest that the observed interaction between tobacco and Arthrobacter may be a consequence of an ecological fitting process

    An isoflavone catabolism gene cluster underlying interkingdom interactions in the soybean rhizosphere

    Get PDF
    ダイズ根圏細菌のイソフラボン代謝遺伝子クラスターを発見--根圏形成メカニズムの理解や有用物質生産に貢献--.京都大学プレスリリース. 2024-04-24.Plant roots secrete various metabolites, including plant specialized metabolites, into the rhizosphere, and shape the rhizosphere microbiome, which is crucial for the plant health and growth. Isoflavones are major plant specialized metabolites found in legume plants, and are involved in interactions with soil microorganisms as initiation signals in rhizobial symbiosis and as modulators of the legume root microbiota. However, it remains largely unknown the molecular basis underlying the isoflavone-mediated interkingdom interactions in the legume rhizosphere. Here, we isolated Variovorax sp. strain V35, a member of the Comamonadaceae that harbors isoflavone-degrading activity, from soybean roots and discovered a gene cluster responsible for isoflavone degradation named ifc. The characterization of ifc mutants and heterologously expressed Ifc enzymes revealed that isoflavones undergo oxidative catabolism, which is different from the reductive metabolic pathways observed in gut microbiota. We further demonstrated that the ifc genes are frequently found in bacterial strains isolated from legume plants, including mutualistic rhizobia, and contribute to the detoxification of the antibacterial activity of isoflavones. Taken together, our findings reveal an isoflavone catabolism gene cluster in the soybean root microbiota, providing molecular insights into isoflavone-mediated legume–microbiota interactions

    Short-term inhalation of sargramostim with concomitant high-dose steroids does not hasten recovery in moderate COVID-19 pneumonia: a double-blind, randomised, placebo-controlled trial

    No full text
    Granulocyte-macrophage colony stimulating factor (GM-CSF) inhalation may alleviate pulmonary inflammation caused by viral pneumonia. To investigate this, we evaluated its efficacy on COVID-19 pneumonia. This double-blind, randomised, placebo-controlled study (ClinicalTrials.gov: NCT04642950) evaluated patients in the first half of 2021 at seven Japanese hospitals. Hospitalised patients with COVID-19 pneumonia with moderate hypoxaemia inhaled sargramostim or placebo for 5 days. The primary endpoint was days to achieve a ≥ 2-category improvement from baseline on a modified 7-category ordinal scale. Secondary endpoints included degree of oxygenation, defined by amount of oxygen supply, and serum CCL17 level. Seventy-five patients were randomly assigned in a 2:1 ratio to receive sargramostim or placebo, of which 47 and 23 were analysed, respectively. No difference was observed between groups regarding the primary endpoint (8.0 and 7.0 days for sargramostim and placebo, respectively) or in the secondary endpoints, except for CCL17. A post hoc sub-analysis indicated that endpoint assessments were influenced by concomitant corticosteroid therapy. When the cumulative corticosteroid dose was ≤500 mg during Days 1–5, recovery and oxygenation were faster in the sargramostim group than for placebo. Bolus dose corticosteroids were associated with temporarily impaired oxygenation and delayed clinical recovery. The increase in serum CCL17, a candidate prognostic factor, reflected improvement with sargramostim inhalation. The number of adverse events was similar between groups. Two serious adverse events were observed in the sargramostim group without causal relation. Inhaled sargramostim was likely to be effective for COVID-19 pneumonia unless the concomitant corticosteroid dose was high.</p
    corecore