34 research outputs found
Energy transfer from Cr to Nd in substitutional crystal Y3GaxAl5-x O12 codoped with Nd and Cr
Garnet crystals codoped with Nd3+ and Cr3+ ions are a candidate for solar-pumped laser materials. Substitutional disordered crystals Y3GaxAl5-xO12 were prepared to improve the pumping efficiency of Nd3+ luminescence and energy transfer from Cr3+ to Nd3+ ions. The substitutional disordered crystal host produced inhomogeneous broadening of the Nd3+ and Cr3+ optical spectra. Enhancement of overlapping between the Cr3+ absorption bands and the solar spectrum, and between the Cr3+ luminescence bands and the Nd3+ absorption lines led to the increases of the pumping efficiency and the energy transfer rates, respectively. The excitation spectrum of the Nd3+ luminescence, the nonexponential decay curves of the Cr3+ luminescence, and the quantum yields of the Cr3+ and Nd3+ luminescence have given evidence on the energy transfer from Cr3+ to Nd3+ ions
Autophagy-Inducing Factor Atg1 Is Required for Virulence in the Pathogenic Fungus Candida glabrata
Candida glabrata is one of the leading causes of candidiasis and serious invasive infections in hosts with weakened immune systems. C. glabrata is a haploid budding yeast that resides in healthy hosts. Little is known about the mechanisms of C. glabrata virulence. Autophagy is a \u27self-eating\u27 process developed in eukaryotes to recycle molecules for adaptation to various environments. Autophagy is speculated to play a role in pathogen virulence by supplying sources of essential proteins for survival in severe host environments. Here, we investigated the effects of defective autophagy on C. glabrata virulence. Autophagy was induced by nitrogen starvation and hydrogen peroxide (H2O2) in C. glabrata.A mutant strain lacking CgAtg1, an autophagy-inducing factor, was generated and confirmed to be deficient for autophagy. The Cgatg1Δ strain was sensitive to nitrogen starvation and H2O2, died rapidly in water without any nutrients, and showed high intracellular ROS levels compared with the wild-type strain and the CgATG1-reconstituted strain in vitro. Upon infecting mouse peritoneal macrophages, the Cgatg1Δ strain showed higher mortality from phagocytosis by macrophages. Finally, in vivo experiments were performed using two mouse models of disseminated candidiasis and intra-abdominal candidiasis. The Cgatg1Δ strain showed significantly decreased CFUs in the organs of the two mouse models. These results suggest that autophagy contributes to C. glabrata virulence by conferring resistance to unstable nutrient environments and immune defense of hosts, and that Atg1 is a novel fitness factor in Candida species
Virulence assessment of six major pathogenic Candida species in the mouse model of invasive candidiasis caused by fungal translocation
Gastrointestinal colonization has been considered as the primary source of candidaemia; however, few established mouse models are available that mimic this infection route. We therefore developed a reproducible mouse model of invasive candidiasis initiated by fungal translocation and compared the virulence of six major pathogenic Candida species. The mice were fed a low-protein diet and then inoculated intragastrically with Candida cells. Oral antibiotics and cyclophosphamide were then administered to facilitate colonization and subsequent dissemination of Candida cells. Mice infected with Candida albicans and Candida tropicalis exhibited higher mortality than mice infected with the other four species. Among the less virulent species, stool titres of Candida glabrata and Candida parapsilosis were higher than those of Candida krusei and Candida guilliermondii. The fungal burdens of C. parapsilosis and C. krusei in the livers and kidneys were significantly greater than those of C. guilliermondii. Histopathologically, C. albicans demonstrated the highest pathogenicity to invade into gut mucosa and liver tissues causing marked necrosis. Overall, this model allowed analysis of the virulence traits of Candida strains in individual mice including colonization in the gut, penetration into intestinal mucosa, invasion into blood vessels, and the subsequent dissemination leading to lethal infections
Evaluation of Candida peritonitis with underlying peritoneal fibrosis and efficacy of micafungin in murine models of intra-abdominal candidiasis
Candida peritonitis is a crucial disease, however the optimal antifungal therapy regimen has not been clearly defined. Peritoneal fibrosis (PF)can be caused by abdominal surgery, intra-abdominal infection, and malignant diseases, and is also widely recognized as a crucial complication of long-term peritoneal dialysis. However, the influence of PF on Candida peritonitis prognosis remains unknown. Here, we evaluated the severity of Candida peritonitis within the context of PF and the efficacy of micafungin using mice. A PF mouse model was generated by intraperitoneally administering chlorhexidine gluconate. Candida peritonitis, induced by intraperitoneal inoculation of Candida albicans, was treated with a 7-day consecutive subcutaneous administration of micafungin. Candida infection caused a higher mortality rate in the PF mice compared with the control mice on day 7. Proliferative Candida invasion into the peritoneum and intra-abdominal organs was confirmed pathologically only in the PF mice. However, all mice in both groups treated with micafungin survived until day 20. Micafungin treatment tends to suppress inflammatory cytokines in the plasma 12 h after infection in both groups. Our results suggest that PF enhances early mortality in Candida peritonitis. Prompt initiation and sufficient doses of micafungin had good efficacy for Candida peritonitis, irrespective of the underlying PF
多剤耐性カンジダおよび細菌に対するカスポファンギンの新たな抗微生物活性
長崎大学学位論文 [学位記番号]博(医歯薬)甲第1326号 [学位授与年月日]令和3年3月22
Unexpected effects of azole transporter inhibitors on antifungal susceptibility in Candida glabrata and other pathogenic Candida species
The pathogenic fungus Candida glabrata is often resistant to azole antifungal agents. Drug efflux through azole transporters, such as Cdr1 and Cdr2, is a key mechanism of azole resistance and these genes are under the control of the transcription factor Pdr1. Recently, the monoamine oxidase A (MAO-A) inhibitor clorgyline was shown to inhibit the azole efflux pumps, leading to increased azole susceptibility in C. glabrata. In the present study, we have evaluated the effects of clorgyline on susceptibility of C. glabrata to not only azoles, but also to micafungin and amphotericin B, using wild-type and several mutant strains. The addition of clorgyline to the culture media increased fluconazole susceptibility of a C. glabrata wild-type strain, whereas micafungin and amphotericin B susceptibilities were markedly decreased. These phenomena were also observed in other medically important Candida species, including Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida krusei. Expression levels of CDR1, CDR2 and PDR1 mRNAs and an amount of Cdr1 protein in the C. glabrata wild-type strain were highly increased in response to the treatment with clorgyline. However, loss of Cdr1, Cdr2, Pdr1, and a putative clorgyline target (Fms1), which is an ortholog of human MAO-A, or overexpression of CDR1 did not affect the decreased susceptibility to micafungin and amphotericin B in the presence of clorgyline. The presence of other azole efflux pump inhibitors including milbemycin A4 oxime and carbonyl cyanide 3-chlorophenylhydrazone also decreased micafungin susceptibility in C. glabrata wild-type, Δcdr1, Δcdr2, and Δpdr1 strains. These findings suggest that azole efflux pump inhibitors increase azole susceptibility but concurrently induce decreased susceptibility to other classes of antifungals independent of azole transporter functions
An oligodeoxyribonucleotide containing 5-formyl-2′-deoxycytidine (fC) at the CpG site forms a covalent complex with DNA cytosine-5 methyltransferases (DNMTs)
5-Methylcytosine (mC) is known to induce epigenetic changes. Ten-eleven translocation (TET) enzymes produce the further oxidized 5-substituted cytosine derivatives, 5-formylcytosine (fC) and 5-carboxylcytosine (caC). However, their roles are unclear thus far. Here, we synthesized oligodeoxyribonucleotides (ODNs) containing 5-formyl-2'-deoxycytidine and examined their interactions with DNA cytosine-5 methyltransferase (DNMT). We found that the ODN sequence containing fCpG formed a covalent complex with both bacterial and mouse recombinant DNMTs in the absence of any cofactors. The covalent bonding with DNMT suggests that the fCpG sequence in DNA may play a role in epigenetic regulation. (C) 2016 Elsevier Ltd. All rights reserved