103 research outputs found

    A rate- and state-dependent ductile flow law of polycrystalline halite under large shear strain and implications for transition to brittle deformation

    Get PDF
    We have conducted double-shear biaxial deformation experiments in layers of NaCl within its fully-plastic (FP) regime up to large shear strains (γ < 50) with velocity steps. From this, we have empirically formulated a rate- and state-dependent flow law which explains the transient mechanical behavior. The steady state flow stress in the FP regime can be explained by a power-law with a stress exponent ~8.5 and an activation enthalpy of ~1.3 eV, with the instantaneous response having a higher stress exponent (13 ± 8), although there is data scatter. The transition to brittle regime is associated with weakening from the ductile flow law. In FP regime, the mechanical response is characterized by a monotonic decay to a new steady state while in the transitional regime, by a peak-decay behavior. The transient flow law obtained here is of considerable importance in the study of the brittle-ductile transition in rocks

    Constitutive properties of clayey fault gouge from the Hanaore fault zone, southwest Japan

    Get PDF
    Velocity step tests at a range of slip rates (0.0154–155.54 μm s^(−1)) are performed using natural fault gouge containing smectite, mica, and quartz collected from an outcrop of the Hanaore Fault, southwest Japan. Field and microscopic observations reveal that the shear deformation is localized to a few centimeters or thinner layer of black clayey fault gouge. This layer is formed by multiple stages, and determining the width of the shear zone due to a single event is difficult to determine. The experimental data on the abrupt jumps in the load point velocity are fitted by a rate‐ and state‐dependent frictional law, coupled with the spring‐slider model, the stiffness of which is treated as a fitting parameter. This treatment is shown to be essential to determine the constitutive parameters and their errors. The velocity steps are successfully fit with typically two state variables: larger b_1 with shorter d_(c1) and smaller b_2 with longer d_(c2). At slip rates higher than 1 μm s^(−1), negative b_2 is required to fit the data in most of the cases. Thin gouge layers (∼200 μm) in the experiment enables us to simulate large averaged shear strain which is important to recognize the evolution of the state variable associated with negative b_2 and long d_(c2). Observation of microscopic structure after experiments shows poor development of Y planes. This may be consistent with the mechanical behavior observed: weak occurrence of initial peak strength at yielding and displacement hardening throughout the experiments

    Low- to high-velocity frictional properties of the clay-rich gouges from the slipping zone of the 1963 Vaiont slide, northern Italy

    Get PDF
    The final slip of about 450 m at about 30 m/s of the 1963 Vaiont landslide (Italy) was preceded by >3 year long creeping phase which was localized in centimeter-thick clay-rich layers (60–70% smectites, 20–30% calcite and quartz). Here we investigate the frictional properties of the clay-rich layers under similar deformation conditions as during the landslide: 1–5 MPa normal stress, 2 × 10^(−7) to 1.31 m/s slip rate and displacements up to 34 m. Experiments were performed at room humidity and wet conditions with biaxial, torsion and rotary shear apparatus. The clay-rich gouge was velocity-independent to velocity-weakening in both room humidity and wet conditions. In room humidity experiments, the coefficient of friction decreased from 0.47 at v 0.70 m/s: full lubrication results from the formation of a continuous water film in the gouge. The Vaiont landslide occurred under wet to saturated conditions. The unstable behavior of the landslide is explained by the velocity-weakening behavior of the Vaiont clay-rich gouges. The formation of a continuous film of liquid water in the slipping zone reduced the coefficient of friction to almost zero, even without invoking the activation of thermal pressurization. This explains the extraordinary high velocity achieved by the slide during the final collapse

    Этиопатогенетические аспекты терапии хронических воспалительных заболеваний органов малого таза

    Get PDF
    Наведено сучасні принципи лікування запальних захворювань жіночих статевих органів з урахуванням етіопатогенезу запалення й особливостей продукції у цервікальному слизу запальних і протизапальних цитокинів. Показано, що включення до комплексу терапії інтерферонів сприяє відновленню порушеного імунологічного гомеостазу й зниженню ймовірності рецидивів захворювання.Modern principles of treatment of inflammatory diseases of female genitals taking into account an etiopathogenesis of an inflammation and features of production in сervical mucous inflammatory and antiinflammatory cytokines are resulted. Including in a complex of therapy of interferons is shown, that, promotes restoration of the broken immunologic homeostasis and depression of probability of relapses of disease

    The crystal structure of the plant small GTPase OsRac1 reveals its mode of binding to NADPH oxidase

    Full text link
    This research was originally published in Journal of Biological Chemistry. Ken-ichi Kosami, Izuru Ohki, Minoru Nagano, Kyoko Furuita, Toshihiko Sugiki, Yoji Kawano, Tsutomu Kawasaki, Toshimichi Fujiwara, Atsushi Nakagawa, Ko Shimamoto and Chojiro Kojima. The crystal structure of the plant small GTPase OsRac1 reveals its mode of binding to NADPH oxidase. Journal of Biological Chemistry. 2014; 289, 28569-28578. © the American Society for Biochemistry and Molecular Biology

    Mesoscopic Structural Observations of Cores from the Chelungpu Fault System, Taiwan Chelungpu-Fault Drilling Project Hole-A, Taiwan

    Full text link
    Structural characteristics of fault rocks distributed within major fault zones provide basic information in understanding the physical aspects of faulting. Mesoscopic structural observations of the drilledcores from Taiwan Chelungpu-fault Drilling Project Hole-A are reported in this article to describe and reveal the distribution of fault rocks within the Chelungpu Fault System
    corecore