254 research outputs found

    C型肝炎ウイルス(HCV)レプリコン系を用いた非構造蛋白(NS)5AとNS5Bの相互作用のHCV RNA複製に与える影響に関する検討

    Get PDF
    取得学位 : 博士(医学), 学位授与番号 : 医博甲第1624号, 学位授与年月日 : 平成16年3月25日, 学位授与大学 : 金沢大

    Differential hepatitis C virus RNA target site selection and host factor activities of naturally occurring miR-122 3′ variants

    Get PDF
    In addition to suppressing cellular gene expression, certain miRNAs potently facilitate replication of specific positive-strand RNA viruses. miR-122, a pro-viral hepatitis C virus (HCV) host factor, binds and recruits Ago2 to tandem sites (S1 and S2) near the 5΄ end of the HCV genome, stabilizing it and promoting its synthesis. HCV target site selection follows canonical miRNA rules, but how non-templated 3΄ miR-122 modifications impact this unconventional miRNA action is unknown. High-throughput sequencing revealed that a 22 nt miRNA with 3΄G (‘22–3΄G’) comprised <63% of total miR-122 in human liver, whereas other variants (23–3΄A, 23–3΄U, 21–3΄U) represented 11–17%. All loaded equivalently into Ago2, and when tested individually functioned comparably in suppressing gene expression. In contrast, 23–3΄A and 23–3΄U were more active than 22–3΄G in stabilizing HCV RNA and promoting its replication, whereas 21–3΄U was almost completely inactive. This lack of 21–3΄U HCV host factor activity correlated with reduced recruitment of Ago2 to the HCV S1 site. Additional experiments demonstrated strong preference for guanosine at nt 22 of miR-122. Our findings reveal the importance of non-templated 3΄ miR-122 modifications to its HCV host factor activity, and identify unexpected differences in miRNA requirements for host gene suppression versus RNA virus replication

    hnRNP L and NF90 Interact with Hepatitis C Virus 5'-Terminal Untranslated RNA and Promote Efficient Replication

    Get PDF
    The 5′-terminal sequence of the hepatitis C virus (HCV) positive-strand RNA genome is essential for viral replication. Critical host factors, including a miR-122/Ago2 complex and poly(rC)-binding protein 2 (PCBP2), associate with this RNA segment. We used a biotinylated RNA pulldown approach to isolate host factors binding to the HCV 5′ terminal 47 nucleotides and, in addition to Ago2 and PCBP2, identified several novel proteins, including IGF2BP1, hnRNP L, DHX9, ADAR1, and NF90 (ILF3). PCBP2, IGF2BP1, and hnRNP L bound single-stranded RNA, while DHX9, ADAR1, and NF90 bound a cognate double-stranded RNA bait. PCBP2, IGF2BP1, and hnRNP L binding were blocked by preannealing the single-stranded RNA bait with miR-122, indicating that they bind the RNA in competition with miR-122. However, IGF2BP1 binding was also inhibited by high concentrations of heparin, suggesting that it bound the bait nonspecifically. Among these proteins, small interfering RNA-mediated depletion of hnRNP L and NF90 significantly impaired viral replication and reduced infectious virus yields without substantially affecting HCV internal ribosome entry site-mediated translation. hnRNP L and NF90 were found to associate with HCV RNA in infected cells and to coimmunoprecipitate with NS5A in an RNA-dependent manner. Both also associate with detergent-resistant membranes where viral replication complexes reside. We conclude that hnRNP and NF90 are important host factors for HCV replication, at least in cultured cells, and may be present in the replication complex

    Functional interaction of hepatitis C virus NS5B with nucleolin GAR domain

    Get PDF
    金沢大学がん研究所Hepatitis C Virus (HCV) non-structural proteins are major components of replication complex that is modulated by several host factors. We previously reported that nucleolin, a representative nucleolar marker, interacts with the NS5B through two separated sequences, amino acids (aa) 208-214 and 500-506, and that W208 in the former stretch is essential for both nucleolin-binding and HCV replication. Here we evaluated the role of the latter stretch aa 500-506 of WRHRARS in nucleolin-binding and HCV replication scanned by alanine-substituted clustered mutant (cm) or point mutant (pm). One tryptophan and three arginine residues in the sequence were found to be essential both for nucleolin-binding in vivo and HCV replication detected with a HCV subgenomic replicon transfected into Huh7 cells. NS5B-binding of nucleolin was further delineated by truncation and clustered mutants of nucleolin. Arginine-glycine-glycine (RGG) repeat in the Glycine arginine rich (GAR) domain were defined to be indispensable for NS5B-binding immunologically detected in in vivo and in vitro although short internal-truncations of RGG repeat are tolerable for NS5B-binding. These results indicate that nucleolin is a critical host factor for HCV replication through the direct interaction between W208 and several residues at the sequence, aa 500-505, of NS5B, and the long-turn motif including RGG repeat at nucleolin C-terminal. © 2007 The Japanese Biochemical Society

    Base Pairing between Hepatitis C Virus RNA and MicroRNA 122 3' of Its Seed Sequence Is Essential for Genome Stabilization and Production of Infectious Virus

    Get PDF
    MicroRNA 122 (miR-122) facilitates hepatitis C virus (HCV) replication by recruiting an RNA-induced silencing complex (RISC)-like complex containing argonaute 2 (Ago2) to the 5′ end of the HCV genome, thereby stabilizing the viral RNA. This requires base pairing between the miR-122 “seed sequence” (nucleotides [nt] 2 to 8) and two sequences near the 5′ end of the HCV RNA: S1 (nt 22 to 28) and S2 (nt 38 to 43). However, recent reports suggest that additional base pair interactions occur between HCV RNA and miR-122. We searched 606 sequences from a public database (genotypes 1 to 6) and identified two conserved, putatively single-stranded RNA segments, upstream of S1 (nt 2 and 3) and S2 (nt 30 to 34), with potential for base pairing to miR-122 (nt 15 and 16 and nt 13 to 16, respectively). Mutagenesis and genetic complementation experiments confirmed that HCV nt 2 and 3 pair with nt 15 and 16 of miR-122 bound to S1, while HCV nt 30 to 33 pair with nt 13 to 16 of miR-122 at S2. In genotype 1 and 6 HCV, nt 4 also base pairs with nt 14 of miR-122. These 3′ supplementary base pair interactions of miR-122 are functionally important and are required for Ago2 recruitment to HCV RNA by miR-122, miR-122-mediated stabilization of HCV RNA, and production of infectious virus. However, while complementary mutations at HCV nt 30 and 31 efficiently rescued the activity of a 15C,16C miR-122 mutant targeting S2, similar mutations at nt 2 and 3 failed to rescue Ago2 recruitment at S1. These data add to the current understanding of miR-122 interactions with HCV RNA but indicate that base pairing between miR-122 and the 5′ 43 nt of the HCV genome is more complex than suggested by existing models

    Ketoamide Resistance and Hepatitis C Virus Fitness in Val55 Variants of the NS3 Serine Protease

    Get PDF
    ABSTRACT Drug-resistant viral variants are a major issue in the use of direct-acting antiviral agents in chronic hepatitis C. Ketoamides are potent inhibitors of the NS3 protease, with V55A identified as mutation associated with resistance to boceprevir. Underlying molecular mechanisms are only partially understood. We applied a comprehensive sequence analysis to characterize the natural variability at Val55 within dominant worldwide patient strains. A residue-interaction network and molecular dynamics simulation were applied to identify mechanisms for ketoamide resistance and viral fitness in Val55 variants. An infectious H77S.3 cell culture system was used for variant phenotype characterization. We measured antiviral 50% effective concentration (EC 50 ) and fold changes, as well as RNA replication and infectious virus yields from viral RNAs containing variants. Val55 was found highly conserved throughout all hepatitis C virus (HCV) genotypes. The conservative V55A and V55I variants were identified from HCV genotype 1a strains with no variants in genotype 1b. Topology measures from a residue-interaction network of the protease structure suggest a potential Val55 key role for modulation of molecular changes in the protease ligand-binding site. Molecular dynamics showed variants with constricted binding pockets and a loss of H-bonded interactions upon boceprevir binding to the variant proteases. These effects might explain low-level boceprevir resistance in the V55A variant, as well as the Val55 variant, reduced RNA replication capacity. Higher structural flexibility was found in the wild-type protease, whereas variants showed lower flexibility. Reduced structural flexibility could impact the Val55 variant's ability to adapt for NS3 domain-domain interaction and might explain the virus yield drop observed in variant strains

    Peptidomimetic Escape Mechanisms Arise via Genetic Diversity in the Ligand-Binding Site of the Hepatitis C Virus NS3/4A Serine Protease

    Get PDF
    It is a challenge to develop direct-acting antiviral agents (DAAs) that target the NS3/4A protease of hepatitis C virus (HCV) because resistant variants develop. Ketoamide compounds, designed to mimic the natural protease substrate, have been developed as inhibitors. However, clinical trials have revealed rapid selection of resistant mutants, most of which are considered to be pre-existing variants

    Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex

    Get PDF
    MicroRNAs (miRNAs) are small noncoding RNAs that regulate eukaryotic gene expression by binding to regions of imperfect complementarity in mRNAs, typically in the 3′ UTR, recruiting an Argonaute (Ago) protein complex that usually results in translational repression or destabilization of the target RNA. The translation and decay of mRNAs are closely linked, competing processes, and whether the miRNA-induced silencing complex (RISC) acts primarily to reduce translation or stability of the mRNA remains controversial. miR-122 is an abundant, liver-specific miRNA that is an unusual host factor for hepatitis C virus (HCV), an important cause of liver disease in humans. Prior studies show that it binds the 5′ UTR of the messenger-sense HCV RNA genome, stimulating translation and promoting genome replication by an unknown mechanism. Here we show that miR-122 binds HCV RNA in association with Ago2 and that this slows decay of the viral genome in infected cells. The stabilizing action of miR-122 does not require the viral RNA to be translationally active nor engaged in replication, and can be functionally substituted by a nonmethylated 5′ cap. Our data demonstrate that a RISC-like complex mediates the stability of HCV RNA and suggest that Ago2 and miR-122 act coordinately to protect the viral genome from 5′ exonuclease activity of the host mRNA decay machinery. miR-122 thus acts in an unconventional fashion to stabilize HCV RNA and slow its decay, expanding the repertoire of mechanisms by which miRNAs modulate gene expression

    microRNA-122 Abundance in Hepatocellular Carcinoma and Non-Tumor Liver Tissue from Japanese Patients with Persistent HCV versus HBV Infection

    Get PDF
    Mechanisms of hepatic carcinogenesis in chronic hepatitis B and hepatitis C are incompletely defined but often assumed to be similar and related to immune-mediated inflammation. Despite this, several studies hint at differences in expression of miR-122, a liver-specific microRNA with tumor suppressor properties, in hepatocellular carcinoma (HCC) associated with hepatitis B virus (HBV) versus hepatitis C virus (HCV) infection. Differences in the expression of miR-122 in these cancers would be of interest, as miR-122 is an essential host factor for HCV but not HBV replication. To determine whether the abundance of miR-122 in cancer tissue is influenced by the nature of the underlying virus infection, we measured miR-122 by qRT-PCR in paired tumor and non-tumor tissues from cohorts of HBV- and HCV-infected Japanese patients. miR-122 abundance was significantly reduced from normal in HBV-associated HCC, but not in liver cancer associated with HCV infection. This difference was independent of the degree of differentiation of the liver cancer. Surprisingly, we also found significant differences in miR-122 expression in non-tumor tissue, with miR-122 abundance reduced from normal in HCV- but not HBV-infected liver. Similar differences were observed in HCV- vs. HBV-infected chimpanzees. Among HCV-infected Japanese subjects, reductions in miR-122 abundance in non-tumor tissue were associated with a single nucleotide polymorphism near the IL28B gene that predicts poor response to interferon-based therapy (TG vs. TT genotype at rs8099917), and correlated negatively with the abundance of multiple interferon-stimulated gene transcripts. Reduced levels of miR-122 in chronic hepatitis C thus appear to be associated with endogenous interferon responses to the virus, while differences in miR-122 expression in HCV- versus HBV-associated HCC likely reflect virus-specific mechanisms contributing to carcinogenesis. The continued expression of miR-122 in HCV-associated HCC may signify an important role for HCV replication late in the progression to malignancy
    corecore