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ABSTRACT

In addition to suppressing cellular gene expression,
certain miRNAs potently facilitate replication of spe-
cific positive-strand RNA viruses. miR-122, a pro-
viral hepatitis C virus (HCV) host factor, binds and
recruits Ago2 to tandem sites (S1 and S2) near the
5 end of the HCV genome, stabilizing it and pro-
moting its synthesis. HCV target site selection fol-
lows canonical miRNA rules, but how non-templated
3’ miR-122 modifications impact this unconven-
tional miRNA action is unknown. High-throughput
sequencing revealed that a 22 nt miRNA with 3'G
(‘22-3'G’) comprised <63% of total miR-122 in hu-
man liver, whereas other variants (23-3'A, 23-3'U,
21-3'U) represented 11-17%. All loaded equivalently
into Ago2, and when tested individually functioned
comparably in suppressing gene expression. In con-
trast, 23-3’'A and 23-3'U were more active than 22—
3'G in stabilizing HCV RNA and promoting its repli-
cation, whereas 21-3'U was almost completely in-
active. This lack of 21-3'U HCV host factor activity
correlated with reduced recruitment of Ago2 to the
HCV S1 site. Additional experiments demonstrated
strong preference for guanosine at nt 22 of miR-122.
Our findings reveal the importance of non-templated
3’ miR-122 modifications to its HCV host factor ac-
tivity, and identify unexpected differences in miRNA

requirements for host gene suppression versus RNA
virus replication.

INTRODUCTION

Persistent infection with hepatitis C virus (HCV) is a lead-
ing cause of chronic liver diseases, including cirrhosis and
liver cancer (1,2). A member of the Flaviviridae family, HCV
possesses a positive-sense RNA genome that contains a
large single open reading frame (ORF) that encodes three
structural and seven non-structural proteins that contribute
collectively to viral RNA synthesis and the subsequent as-
sembly and egress of new virions (3). The ORF is flanked by
5" and 3’ untranslated RNA (UTR) segments that contain
regulatory elements that are important for translation and
replication (4). Infection with HCV is highly hepatotropic,
and dependent upon the host factor activity of microRNA-
122 (miR-122), a liver specific microRNA (miRNA) that
accounts for a large fraction of all miRNAs in the liver
(5-7). miR-122 binds two tandem sites, designated S1 and
S2, near the 5’ end of the HCV RNA genome as a com-
plex with Argonaute 2 (Ago2) protein, a key component of
the miRNA-induced RNA silencing complex (miRISC) (7—
10). This results in protection of the viral RNA from 5 de-
cay mediated by the cytoplasmic 5’ exoribonuclease, Xrnl
(8,11-12) and independently stimulates de novo viral RNA
synthesis directed by the viral NS5B RNA-dependent RNA
polymerase (13). Collectively, these actions are essential for
efficient production of infectious virus (7), a fact borne out
by the substantial antiviral activity of miR-122 antagomirs
administered to HCV-infected individuals (14).
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While unusual, this positive host factor activity of miR-
122 in a viral lifecycle is not unique among miRNAs. miR-
17 and let-7 family members have recently been found to
positively regulate the replication of pestiviruses, veterinary
pathogens with positive-strand RNA genomes distantly re-
lated to HCV (15). These miRNAs primarily target sites
in the 3’UTR of these viruses rather than the SUTR. The
binding of miR-17 to bovine viral diarrhea virus RNA re-
sults in small positive effects on its stability, but is critically
important for replication (15). At a mechanistic level, it is
not clear that miR-17 and let-7 function in a manner similar
to miR-122 in the HCV lifecycle, but these recent observa-
tions show that the capacity to positively regulate positive-
strand virus replication is common to multiple miRNAs.
Whether rules governing miRNA target selection in this
context are similar to those acting in miRNA suppression of
host gene expression is unknown, and an interesting ques-
tion.

miR-122 binds to sites throughout the HCV RNA
genome with relatively low affinity (16), but it is the robust
binding of miR-122 to the S1 and S2 sites in concert with
Ago?2 that accounts for its pro-viral HCV host factor activ-
ity (7-8,10). The structural basis for this robust binding is
not well understood. Mutational studies have demonstrated
the importance of canonical seed sequence base pairing, as
well as 3’ supplemental interactions, in the binding of miR-
122 to HCV RNA and in the recruitment of Ago2 to both
the S1 and S2 sites (17-19) (Figure 1A). Studies using se-
lective 2'-hydroxyl acylation analyzed by primer extension
(SHAPE) have also provided insight into the interactions
of miR-122 with the HCV target sequence in vitro (20,21),
but these are biased by the absence of Ago2. Other host
RNA-binding proteins, such as poly(C)-binding protein 2
(PCBP2), are also likely to influence miR-122 interactions
with the HCV genome (22). Thus, despite its importance in
the viral lifecycle, the structure of the complex formed by
the viral RNA, miR-122 and Ago2 remains unknown.

Existing models for this complex include no base-pair
interactions between HCV RNA and the 3’ terminal nu-
cleotides of the miRNA (Figure 1A), but no previous stud-
ies have carefully examined the role of the 3’ miR-122 se-
quence in HCV target site selection. Recent studies indicate
that the 3’ ends of guide-strand RNAs may regulate guide-
target pairing affinities by influencing the conformation of
both the Argonaute protein and guide strand RNA through
their interaction with the PAZ domain (23-25). In addition,
CLEAR-CLIP studies have suggested that duplex forma-
tion between the RNA target and the 3’ end of miRNAs
contributes significantly to target site selection for many
miRNAs (26). Since the 3’ terminal nucleotides of miR-122
(and other miRNAs) undergo extensive non-templated ad-
ditions and deletions in vivo (27), we sought to understand
whether variation at the 3’ end of miR-122 influences its
HCYV host factor activity. Here, we describe the diversity of
3’ miR-122 sequences that are present within infected and
uninfected human liver tissue, as well as the role played by
the 3’ terminal nucleotides of miR-122 in S1 and S2 target
site selection, and in recruiting Ago2 to the HCV genome
and stabilizing and promoting its replication. Our results
demonstrate that both length and composition of the 3’ ter-
minal nucleotides strongly influence the HCV host factor

activity of naturally occurring miR-122 variants, but have
surprisingly little if any effect on canonical miR-122 func-
tion in suppressing gene expression. We also show that there
are novel and distinct requirements for miR-122 binding
and Ago2 recruitment at the S1 versus S2 sites of the HCV
genome.

MATERIALS AND METHODS
Ethics statement

All human subjects provided written informed consent for
participation in the study, and tissue acquisition proce-
dures were approved by the ethics committee for Human
Genome/Gene Analysis Research at Kanazawa University
(Kanazawa, Japan).

Small RNA-sequencing

RNA was isolated as described previously (28). RNA
purity was assessed with a Nanodrop 2000 (Thermo
Scientific) and integrity was determined with an Agilent
2100 Bioanalyzer (Agilent). RNA integrity and sequencing
quality were comparable for all specimens. Small RNA
libraries were generated using Illumina TruSeq Small RNA
Sample Preparation Kit (Illumina, San Diego, CA, USA).
Sequencing was performed on an Illumina HiSeq 2000
platform. For the bioinformatics analysis, miR-122-5p
variants differing in their 3’ terminal sequence were identi-
fied by searching for all small RNA reads in each sample
that shared the core 5 miR-122 sequence (nts 1-18):
‘UGGAGUGUGACAAUGGUG’. These reads were
categorized according to their downstream 3’ sequence
as described in ‘Results’ section and shown in Figure 1B,
and the proportion of all miR-122 reads represented by
each specific variant determined for each tissue or cell
culture sample. Nineteen variants accounted for >98% of
all miR-122 reads in each of the samples (Figure 1B), and
include the most common variants described by Katoh ez
al. (27): 21-3'U (UGGAGUGUGACAAUGGUGUUU),
22-3G (UGGAGUGUGACAAUGGUGUUUG), 23—
3U (UGGAGUGUGACAAUGGUGUUUGU) and
23-3’A (UGGAGUGUGACAAUGGUGUUUGA).
Small RNA-sequencing data was deposited on GEO
(GSES57381).

Cells and reagents

Huh-7.5, FT3-7 (a clonal derivative of Huh7 cells), wild-
type and Ago2 knockout murine embryonic fibroblasts
(MEFs) were maintained as described previously (8,19).
Sofosbuvir  (2'-deoxy-2'-a-fluoro-p-C-methyluridine-5'-
monophosphate) was obtained from CHEMSCENE, LLC.
Final dilutions contained 0.1% dimethyl sulfoxide.

Plasmids

pH77S.3/GLuc, pH77S/GLuc-AAG, pHJ3-5/GLuc,
pHIJI3-5/GLuc-GND, pJFHI1/GLuc, its cell culture-
adapted variant, pJFH1-QL/GLuc, the related S1-, S2-
and S1-S2-p6m mutants, and psiCHECK2/Luc-3YHCV
have been described previously (8,19,29). Mutations
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Figure 1. Natural variation in the 3’ terminal bases of the HCV host factor, miR-122. (A) Base-pair interactions between miR-122 (red font) and the
extreme 5" end of the positive-strand HCV RNA genome (black font) established in previous mutational analyses. (S1) and (S2) represent seed-match sites,
SL1I indicates stem-loop 1 in the HCV 5'UTR. Note the absence of base pairs involving the 3’ terminal 6 nucleotides of miR-122. (B) The 19 most abundant
miR-122-5p (guide strand) variants identified in non-malignant liver tissue from HCV-infected and non-infected human subjects (n = 4 each). Sequences are
listed according to their abundance (percent of all small RNAs sharing the core 5’ miR-122 sequence UGGAGUGUGACAAUGGUGUU’). Underlined
bases represent non-templated additions and deletions. The pre-miR-122 sequence is shown at the top for comparison. Error bars represent the SEM. (C)
Relative abundance of all miR-122 reads as the percentage of all miRNAs in HCV-infected (HCV) and non-infected (N) liver tissue. (D) Expanded view of
the five most abundant miR-122 variants in HCV-infected versus non-infected human liver. Each symbol represents the result from an individual sample.
Error bars represent SD, n = 4. **P < 0.01, ***P < 0.001, by ANOVA with Holm-Sidak’s multiple comparisons test.

or deletions in H77S/GLuc-AAG-S1p6m/dSL1 and -
S1p6m/Ins5U mutants were introduced by primer-directed
mutagenesis of the sequence spanning the Notl and Agel
sites as described (8). Single base substitutions were created
within psiCHECK?2/Luc-3'HCV by inserting pre-annealed
oligonucleotides containing mutated sequences using the
Xhol and Notl sites. The 3'UTR sequence of SLC7A1
containing natural miR-122 target sites (6) was amplified
using SuperScript® III One-Step RT-PCR System with
Platinum® Taq DNA Polymerase (Thermo Scientific)
and primers 5-AATTCTCGAGGACATAAGCTGT
CTGGCCTCTCTGT-3 and 5-TTATATGCGGCCGC
CTCAGTGGAACGCTCCACCCA-3 from total RNA
extracted from Huh-7.5 cells and cloned into psiCHECK?2
using the Xhol and Notl sites. Base changes and the
integrity of the surrounding sequences were confirmed by
DNA sequencing.

RNA oligonucleotides

RNA oligonucleotides were synthesized by Dharmacon,
and miRNAs were transfected as miRNA/miRNA* du-
plexes as described (19).

RNA transcription

RNA transcripts were synthesized in vitro as described pre-
viously (29).

Transfections

HCV RNA (5 pg) and duplex miRNA (250 pmol) were
mixed with 5 x 10° FT3-7 or PH5SCHS cells in a 4-mm cu-
vette and pulsed once at 250 V, 950 wF and 50 © in a Gene
Pulser Xcell Total System (Bio-Rad). MEFs were electro-
porated at 400 V, 250 wF and oo 9.
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Gaussia luciferase assay

Cell culture supernatant fluids were collected at intervals
following transfection and cells then refed with fresh media.
Secreted Gaussia luciferase (GLuc) activity was measured
as described (29).

Immunoblots

Immunoblotting was carried out using standard methods
with the following antibodies: mouse monoclonal antibod-
ies (mADs) to human Ago2 (Clone 1B1-E2HS, MBL In-
ternational) or mouse Ago2 (Clone 2D4, Wako Chemi-
cals); and rabbit monoclonal antibody to Ago2 (Cell Sig-
naling Technology). Protein bands were visualized with an
Odyssey Infrared Imaging System (Li-Cor Biosciences).

Ago2-RNA co-immunoprecipitation

Five million MEFs or FT3-7 cells were electroporated with
5 pg HCV RNA and 250 pmol duplex miRNAs and seeded
onto a 10 cm dish. Five hours later, cells were harvested in
lysis buffer [150 mM KCI, 25 mM Tris-HCI pH 7.4, 5 mM
EDTA, 1% Triton X-100, 5 mM DTT, Complete protease
inhibitor cocktail (Roche) and 100 U/ml RNaseOUT (In-
vitrogen)]. Lysates were centrifuged, and filtered through a
0.22 wm syringe filter. Filtrates were incubated with anti-
mouse Ago2 mAb (Wako Chemicals), anti-human Ago2
mADb (MBL International) or isotype control IgG at 4°C
for 2 h, followed by the addition of 30 pl of Protein
G Sepharose (50% Slurry, GE Healthcare) for 1 h. The
Sepharose beads were washed three times in wash buffer [1
x TBS, 1.2% Triton X-100, 5 mM DTT, Complete protease
inhibitor cocktail (Roche), 80 U/ml RNaseOUT (Invitro-
gen)] and RNA extracted using the RNeasy Mini Kit (Qi-
agen). HCV RNA associated with Ago2 protein was quan-
tified by ¢cDNA synthesis using SuperScript® III First-
Strand Synthesis SuperMix for qRT-PCR (Invitrogen) fol-
lowed by TagMan qPCR analysis using iQ Supermix (Bio-
Rad), or measured semi-quantitatively by RT-PCR as de-
scribed (19).

psiCHECK2 reporter assay

PHSCHS cells or MEFs seeded on 96-well plates were co-
transfected with 20 ng of psiCHECK2 DNA and 50 nM du-
plex miRNA using silLentFect™ Lipid Reagent (Bio-Rad).
Twenty-four hours later, the cells were lysed in 30 pl of Pas-
sive Lysis Buffer (Promega). Firefly (FLuc) and Renilla lu-
ciferase (RLuc) reporter activities were measured using a
Dual-Luciferase Reporter Assay System (Promega) (8).

CLEAR-CLIP data analysis

Previously described CLEAR (covalent ligation of endoge-
nous Argonaute-bound RNAs)-CLIP sequence data from a
study of HCV RNA-associated miRNAs (15) was retrieved
from the NCBI Gene Expression Omnibus (GSE76967).
Reads containing miR122 sequence fused at its 3’ end to
sequence near the 5 end of HCV RNA were extracted
by filtering for nts 2-21 of the miR-122 sequence and the

S1/S2 seed site sequences of HCV. miR-122 3’ end vari-
ants were enumerated and percentages calculated. Data
were considered only from accessions in which > 1000 such
miR-122 reads were identified (SRX 1534493, SR X 1534494,
SRX1534496, SRX 1534497 and SRX1534500).

Statistical analyses

Unless noted otherwise, all between-group comparisons
were carried out by one-way or two-way ANOVA using
Prism 6.0 software (GraphPad Software, Inc.).

RESULTS

Relative expression of miR-122 variants in liver from HCV-
infected versus non-infected individuals

Mature miRNAs, including miR-122, are subject to a va-
riety of 3’ modifications, including non-templated adeny-
lation, uridylation and trimming, that influence both their
stability and function (27,30). We previously reported the
use of high-throughput sequencing to profile in an unbi-
ased fashion the expression of small non-coding RNAs in
liver tissue collected from a series of Japanese adults with
chronic viral hepatitis (31). To determine the relative abun-
dance of different 3’ miR-122 variants in human liver, we re-
analyzed data from eight of these subjects, four with chronic
HCYV infection and four non-infected control individuals
undergoing resection of metastatic tumors. We identified
between 258 000 and 738 000 individual reads in each sam-
ple that shared a common 5 20 nt miR-122 sequence (5'-
UGGAGUGUGACAAUGGUGUU-3) but had varied 3’
ends. The most abundant of these, a 22 nt RNA with a 3’
guanosine (the canonical miR-122-5p in miRBase, which
we term 22-3'G’ in this report) accounted for no more than
63% of all miR-122 reads in any one sample (Figure 1B). Al-
though the proportion of all miRNAs comprised by miR-
122 reads varied considerably between individual study sub-
jects (Figure 1C), the relative abundance of the five most
highly expressed variants of miR-122 (22-3'G, 23-3'A, 23—
3'U, 21-3'U and 20-3'U) was remarkably constant (Figure
1D). Notable exceptions were 23-3'U, which represented
a lower proportion of all miR-122 reads in HCV-infected
compared to non-infected subjects, and 22-3'G, which was
reciprocally increased (Figure 1D). These results are consis-
tent with reductions in the percentage of 23-3'U isoforms
of miR-122 recently described by Kim ez al. (32) in a small
number of HCV-infected individuals, although the reduc-
tion in 23-3'U was lesser in magnitude and not associated
with an increase in 21-3'U reported in that study.

FT3-7 cells are derived from human hepatoma Huh-7
cells and are highly permissive for HCV infection (19). Us-
ing a similar high-throughput sequencing strategy, we found
the overall pattern of expression of the 3’ miR-122 variants
in these cells differed significantly from that in liver tissue.
22-3'G had a greater relative abundance, representing about
80% of all miR-122 reads, whereas 23-3'U and especially
23-3’A were reduced (Figure 2A). These differences were
highly significant statistically. To determine whether the 3’
variants are equally capable of being loaded into Ago2, a
central component of the miRISC complex, we also quan-
tified their abundance in RNA extracted from an FT3-7 cell
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Figure 2. miR-122 3’ end variants expressed in a hepatoma cell line, FT3-
7. (A) Relative abundance of the top five miR-122 variants expressed in
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(15). A total of 19 129 miR-122 sequences with 3’ fusion to HCV 5UTR
RNA were characterized. Data shown are means + SD; n = 5 experiments.

Ago2 immunoprecipitate (31). Although statistically signif-
icant, differences between their relative abundance in the
Ago?2 extract versus total cell lysate were small in magni-
tude and unlikely to be of biological importance (Figure
2B). Thus, the major 3’ miR-122 variants are loaded into
Ago2 with only minor differences in efficiency.

To ascertain whether these 3’ miR-122 variants are re-
cruited to replicating viral RNAs within infected human
hepatoma cells, we analyzed CLEAR-CLIP sequencing
data generated in a previously published study (15) in which
Ago2-associated miRNAs were covalently ligated to their
cellular and viral RNA targets in HCV-infected Huh-7.5
cells. We filtered these data to identify chimeric sequences
in which miR-122 was fused at its 3" end to HCV RNA
containing the S1 and/or S2 sites near the 5 end of the
genome, and enumerated the different 3’ variants present.
Although we found substantial variation in the distribution
of the variants in different experiments, the overall propor-
tions of each of the four major 3’ miR-122 variants did not
differ significantly from what we had found in FT3-7 cells
(Figure 2C). Thus, the minor 3’ variants are not only loaded
into Ago2 complexes, they are also recruited to the 5 end
of HCV RNA in infected cells expressing an abundance of
the canonical 22-3'G isoform.
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Differential capacities of miR-122 variants to support HCV
genome amplification

We next assessed the capacities of the 3’ miR-122 variants
to support replication of an HCV RNA reporter genome
(H77S.3/GLuc-S1-S2p6m) in Huh-7.5 cells (Figure 3A).
This HCV reporter RNA contains A-to-U substitutions
at each of the bases pairing with nucleotide 6 of miR-122
in the S1 and S2 seed match sites (Figure 3B). This pre-
vents replication of the reporter RNA genome unless it is
co-transfected with a complementary mutant duplex miR-
122 mimic (designated ‘miR-122p6°) (7). Since replication
of the genome can be monitored non-invasively by mea-
suring GLuc activity secreted by transfected cells, this pro-
vides a simple system for assessing the capacity of miR-
122p6 variants to support replication in cells expressing en-
dogenous, wild-type miR-122. We thus co-transfected the
reporter genome individually with duplex miR-122p6 mim-
ics representing each of the four most abundant 3’ variants
(22-3'G, 23-3'A, 23-3'U and 21-3'U, Figure 1A), and mon-
itored secreted GLuc activity over the ensuing 72 h. As neg-
ative controls, we also co-transfected the reporter genome
with miR-124, an unrelated brain-specific miRNA or wild-
type miR-122 (23-3’U). In each case, we used duplex RNAs
as mimics because the two-nucleotide 3" overhang of ma-
ture miRNA is important for efficient loading of the guide
strand into miRISC complexes.

Surprisingly, the most abundant 3’ miR-122p6 variant
(22-3'G) was not the most active in facilitating amplifi-
cation of the reporter virus genome (Figure 3C). Both of
the 23 nt long miR-122p6 variants (23-3'U and 23-3'A)
were 3-4 fold more efficient than 22-3'G variant in pro-
moting replication, whereas the 21-3'U variant was com-
pletely inactive. Similar results were obtained with a second
HCV RNA which, in contrast to the genotype la SUTR
in the H77S.3/GLuc-S1-S2p6m reporter virus, contains the
5'UTR sequence of a genotype 2a virus, JFH1 (Supplemen-
tary Figure S1). These results suggest that either the length
and/or the composition of the 3’ terminal nucleotides of
miR-122 are important for its ability to support efficient
HCV RNA replication. To distinguish between these pos-
sibilities, we tested a 23 nt miR-122p6 mutant in which the
3’ terminal nucleotides (nts 22 and 23) were substituted with
complementary bases (23-3'CAp6). This miR-122 mimic
did not function as well as either the 23-3'U or 23-3'A (Fig-
ure 3C). We conclude from these results that both the length
and the composition of the 3’ terminal nucleotides of miR-
122 are important for its HCV host factor activities.

We demonstrated previously that the ability of miR-122
to stabilize the HCV RNA genome and to promote its syn-
thesis depends upon its recruitment of Ago2 to the viral
S'UTR (4,8). Thus, we next ascertained whether the dif-
ferences we observed in the host factor activity of these
3’ miR-122 variants correlate with differences in their ca-
pacity to recruit Ago?2 to the viral genome. To accomplish
this, we immunoprecipitated Ago2 from lysates of cells co-
transfected with HCV RNA and the miR-122 variants and
then assessed the amount of HCV RNA associated with
Ago?2 using semi-quantitative RT-PCR. These experiments
revealed that there was less viral RNA associated with Ago2
in cells transfected with the 22-3'G variant than the 23-3'U
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Figure 1), and is shaded in red here and in subsequent figures. Selected pair-wise comparisons are shown: *P < 0.05, **P < 0.01 by one-way ANOVA
with Dunnett’s correction for multiple comparisons. Error bars represent SD; n = 3 technical replicates. Results shown are representative of multiple
independent experiments with similar results (see also Supplementary Figure S1). (D) Semi-quantitative RT-PCR results of HCV RNA associated with
Ago?2 precipitated from lysates of murine embryonic fibroblast (MEFs) that had been co-electroporated with the non-replicating H77S.3/AAG RNA and

either a miR-122 variant or the control miR-124. Immunoblots of immunoprecipitated Ago2 are shown in lower panels.

or 23-3’'A variants, and very little HCV RNA associated
with Ago?2 isolated from 21-3'U-transfected cells (Figure
3D). These results correlate well with the HCV host factor
activities of the 3’ miR-122 variants (Figure 3C and Supple-
mentary Figure S1). Since the variants demonstrate similar
efficiencies for loading into Ago2 (Figure 2B), these results
suggest that the 3'terminal nucleotides of miR-122 play an
important role in determining the affinity of the miR-122—
Ago2 complex for the viral RNA. This conclusion stands in
sharp contrast to the absence of any interactions between
the 3’ terminal miR-122 nucleotides and HCV RNA in the
model structures shown in Figures 1A and 3B.

3’ miR-122 variants differ in their capacity to stabilize HCV
RNA and promote its replication in hepatocyte-derived cells
lacking endogenous miR-122 expression

To exclude the possibility that the results described above
might reflect aberrant miR-122 target site specificities
related to the p6bm mutations present in the reporter
viruses, we carried out similar experiments in a second
human hepatocyte-derived cell line. PH5CHS cells are T
antigen-transformed, non-neoplastic adult human hepato-
cytes. They have no detectable miR-122 expression, mak-
ing HCV replication in these cells completely dependent
upon transfection of exogenous miR-122 (33). We trans-

fected PHSCHS cells with a genotype 2a HCV reporter
virus RNA similar to that shown in Figure 3A that con-
tains the wild-type miR-122 seed-binding and downstream
S'UTR sequence (JFHI1-QL/GLuc) together with duplex
mimics of the various wild-type 3’ miR-122 variants. Nega-
tive miRNA controls for these experiments included duplex
miR-122p6 or miR-124. As shown in Figure 4A, amplifica-
tion of reporter virus RNA (marked by GLuc expression be-
tween 24-72 h post-transfection) was maximal when it was
co-transfected with the 23-3'U or 23-3’A miR-122 variant.
Co-transfection with 22-3'G resulted in significantly lower
levels of replication (P < 0.0001), whereas co-transfection
with 21-3'U completely failed to support replication (Fig-
ure 4A). These results thus mirror closely those described
above from experiments in Huh-7.5 cells supplemented with
p6 mutant versions of these 3" miR-122 variants (Figure
3C), and thereby exclude any confounding effect of the p6
mutation. The 23-3’CA mutant was also demonstrably less
active than 23-3’A and 23-3'U in promoting HCV replica-
tion in PHSCHS cells (P < 0.0001 at 72 h), similar to the
23-3’CAp6 mutant in Huh-7.5 cells (Figure 3C).

In an effort to discern whether differences in the capacity
of the 3’ miR-122 variants to support HCV genome ampli-
fication result from differences in stabilization of the trans-
fected RNA versus differences in viral RNA synthesis, we
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Figure 4. Capacity of natural miR-122 variants to promote stabilization and amplification of the HCV genome. (A) PH5SCHS cells were co-transfected with
the replication competent, genome-length JFH1-QL/GLuc reporter virus RNA, which contains the wild-type HCV 5UTR sequence and the indicated
wild-type 3" miR-122 variants. Supernatant fluids were collected at 5 h, and then 24 h intervals thereafter and assayed for GLuc activity. Results are
presented as the fold-increase in GLuc relative to that in cells co-transfected with the control miRNA, miR-124. ****P < 0.0001 by two-way ANOVA for
comparisons with the 22-3'G variant at 24, 48 and 72 h; $P < 0.05, 8P < 0.01, 8388 P < 0.0001 for comparisons with the miR-122 mutant 23-3'Up6 at the
indicated time point. (B) PH5CHS cells were co-electroporated with HCV JFH1/GLuc RNA and the (left) 23-3'U variant or (right) 23-3'Up6 mutant,
then cultured in the presence or absence of the NS5B inhibitor sofosbuvir (SOF). As negative controls for viral RNA amplification, parallel cultures were
co-electroporated with miR-124 or a non-replicating HCV RNA containing a lethal GND mutation in the NS5B polymerase. Secreted GLuc activity was
followed at intervals. Similar experiments are shown involving transfection of (C) 22-3'G or (D) 21-3'U. (E) Comparison of 4 h (stabilization) and 24 h
results (stabilization + replication) from the experiments shown in panels A-C. Symbols represent GLuc values from individual cultures. In all panels,
error bars represent the SD from n = 4 technical replicates. * P = 0.03 by two-sided Mann—Whitney test. Note that GLuc activity is shown on a log scale
in each panel. The data shown are representative of two independent experiments.

carried out additional experiments assessing GLuc expres-
sion immediately following transfection of PHSCHS cells.
To distinguish GLuc expression resulting from genome
replication versus translation of the transfected input RNA,
we transfected cells with a reporter viral RNA contain-
ing a lethal mutation in the NS5B RNA polymerase
(JFH1/GLuc-GND) that prevents viral RNA synthesis. We
also cultured the cells in the presence or absence of sofosbu-

vir (SOF), a potent antiviral inhibitor of HCV replication.
Secreted GLuc activity was measured at 2 h intervals up to
8 h post-transfection, and again at 24 h. Results from a typ-
ical experiment involving transfection of the 23-3'U variant
are shown in Figure 4B (left). GLuc secreted between 2 and
8 h after transfection reflects translation of the input RNA
(4,8,11,19), and was similar for both replication-competent
and incompetent GND mutant RNAs. Our prior studies
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and those of others show that miR-122-mediated increases
in secreted GLuc activity at these early time points reflect
largely if not entirely increased stability of the transfected
RNA (8,11-12). Similar increases were observed in the pres-
ence of SOF, a potent inhibitor of replication (Figure 4B,
left). Later miR-122-mediated increases in GLuc activity
(24 h) reflect enhanced RNA replication in addition to sta-
bilization, and were not observed with SOF treatment or
in cells transfected with the GND mutant despite stabiliza-
tion of the RNA (Figure 4B, left). These data thus reveal
that 23-3'U both stabilizes the HCV RNA and enhances its
replication (Figure 4B, left). In contrast, neither enhanced
stability nor increased replication followed transfection of
23-3'Upb6 or the irrelevant miRNA control, miR-124 (Fig-
ure 4B, right). Similar experiments confirmed that 22-3'G
is active in both stabilizing the viral RNA as well as stim-
ulating RNA synthesis (Figure 4C), albeit significantly less
efficiently than 23-3'U (Figure 4E). In contrast, whereas the
21-3'U variant demonstrated a statistically significant ca-
pacity to stabilize the HCV RNA, this effect was much less
than that observed with 23-3'U and 22-3'G (Figure 4D and
E). Its ability to stimulate viral RNA synthesis was negligi-
ble (Figure 4D). These results are consistent with those ob-
tained with the p6 miR-122 mutants in Huh-7.5 cells (Fig-
ure 3C) and the wild-type miR-122 variants in PH5CHS
cells (Figure 4A).

miRNA-induced miRISC activity of naturally occurring 3’
miR-122 variants

To determine whether the 3’ miR-122 variants differ in their
capacity to form functionally active miRISC complexes, we
co-transfected the variants into cells together with a re-
porter plasmid psiCHECK2 expressing an RLuc transcript
that has the natural miR-122 SLC7AL1 (a.k.a. CAT1) tar-
get sequence containing three miR-122 binding sites in its
3'UTR (6). RLuc activities were normalized to FLuc activ-
ity produced from a second, independent ORF expressed by
the reporter plasmid. Interestingly, the four major miR-122
variants, including 21-3'U, demonstrated comparable sup-
pressive activity when co-transfected with the reporter plas-
mid into MEFs (Figure 5A, left) or PH5CHS cells (right),
both of which do not express endogenous miR-122. In con-
trast, in many (but not all) experiments the 21-3'U variant
was modestly less active than the other variants in suppress-
ing expression of a reporter containing nts 1-45 of the HCV
genome within its 3’'UTR (Figure 5B). This trend was evi-
dent in both cell types, but statistically significant only in
PHSCHS cells. miR-122 suppression of the HCV reporter
was entirely dependent on Ago2, because the 23-3'U vari-
ant had no effect on RLuc expressed from this reporter in
genetically deficient Ago2~/~ MEFs (Figure 5C). We con-
clude from these results that the 21-3'U variant is less active
in targeting the HCV RNA sequence than the other major
3'UTR variants, although the magnitude of this difference
is much less in reporter gene suppression assays (Figure 5)
than in the HCV host factor assays described above (Fig-
ures 3C and 4A-D).

To ascertain whether the 21-3'U variant is less active
in targeting one or the other of the two HCV seed match
sites, we constructed additional reporter plasmids with a

p6m mutation (Figure 3B) in either SI or S2. When co-
transfected with the S1-p6ém reporter plasmid, wild-type
miR-122 is directed to the S2 site and vice versa. Inter-
estingly, the 21-3'U variant was incapable of suppressing
RLuc expression from the HCV 3’UTR reporter in MEFs
when directed to the S1 site, whereas it suppressed RLuc ex-
pression as efficiently as the other miR-122 variants when
directed to the S2 site (Figure 5D). The 22 and 23 nt long
variants had similar activities when directed to either S1 or
S2. These results indicate that the 3’ terminal nucleotides of
miR-122 are important for miR-122 to properly bind and
recruit Ago2 to the S1 site, but that binding to the S2 site
alone is largely sufficient for miRISC activity when the tar-
get sequence is placed in the 3’ UTR of a reporter construct.

The 3’ terminal nucleotides of miR-122 are required for re-
cruiting Ago2 to the S1 site and essential for efficient promo-
tion of HCV RNA replication

To confirm that the 21-3'U variant is deficient in targeting
the S1 site in the context of genome-length HCV RNA, we
carried out a series of Ago2-pulldown experiments. HCV
RNAs containing the p6m substitution in either S1 or S2
were co-transfected into MEFs together with duplex miR-
122p6 mimics containing a complementary p6 mutation.
Since MEFs lack endogenous expression of miR-122 (8), we
were able to assess the capacity of each variant to bind and
recruit Ago2 to the viral RNA by quantifying the amount
of HCV RNA present in Ago2 immunoprecipitates. Consis-
tent with the results of the reporter assays, 21-3'Up6 failed
to recruit Ago2 to the S1 site of the SIp6m RNA (Figure
6A, left), whereas it efficiently recruited Ago2 to the S2 site
in the S2p6m RNA (right). This difference was highly sig-
nificant statistically (P = 0.710 for miR-124 versus 21-3'U
in the S1p6m-transfected cells, versus P < 0.0001 in the
S2p6m-transfected cells, by two-way ANOVA).

We confirmed the inability of 21-3'U to interact with
the S1 site by determining whether supplementing Huh-7.5
cells with 21-3'Up6 or 22-3'Gp6 promotes replication of
HCV RNAs containing the p6m substitution in S1 or S2.
These cells express endogenous miR-122 capable of inter-
acting with the non-mutated seed match site in these RNAs,
making replication of the RNA dependent upon the ca-
pacity of the transfected p6 mutant miR-122 to bind to
the mutated S1 or S2 site. As anticipated, 21-3'Up6 pro-
moted replication when directed to S2, but not S1, whereas
22-3'Gp6 promoted replication when directed to either site
(Figure 6B). 22-3'Gp6 also stimulated replication of a dou-
ble S1+S2p6m mutant RNA, whereas 21-3'Up6 did not.
We validated these results using a HCV target genome with
a different mutation in the S1 site involving the third nu-
cleotide in the seed sequence binding region, ‘p3m’. A cog-
nate 21-3'Up3 miR-122 variant had much weaker activity
in promoting replication of this RNA than 23-3'Up3, con-
firming that the inability of 21-3'U to promote replication
isnot an artifact caused by the p6m substitution in the HCV
genome (Supplementary Figure S2). Thus, the 21-3'U vari-
ant lacks HCV host factor activity because it has a reduced
capacity to bind the S1 site and recruit Ago?2 to it.

It is puzzling that 21-3'U should have less affinity for the
S1 site than S2, as the seed match sequence in S1is 7 nts long
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Figure 5. Capacity of miR-122 variants to suppress translation of RLuc expressed by a capped reporter mRNA containing (A) the natural SLC7A1
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with Dunnett’s correction for multiple comparisons. (C) Suppression of R Luc translation was measured under the condition of (B) in wild-type or Ago2~/~
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whereas it is only 6 nts long in S2 (Figure 1A). However,
structural studies of Ago2 complexed with a 21 nt guide
RNA have revealed that nts 13-16 of the RNA are exposed
for target recognition as well as nts 2-8 (the seed region)
(34). Furthermore, base pairs involving nucleotides 3’ of the
seed contribute substantially to miR-122 binding at both
S1 and S2 (19). Although this region of the miR-122 guide
strand (nts 13-17) is constant in the 3’ variants we studied,
the upstream HCV nucleotides at the S2 site (... CCAU...")
provide for four Watson—Crick accessory pairs, whereas se-
quence upstream of S1 (‘GCCA...") provides for only three
with a possible additional wobble G-U pair (Figure 1A). To
exclude a role for this difference in the lesser affinity of 21—
3'U for the S1 site, we created a “... CCAU. ..  sequence up-
stream of the S1 seed match similar to that upstream of S2
by inserting a U at nt 5 of the HCV genome. This did not
result in Ago2 recruitment to S1 by 21-3'U (Supplemen-
tary Figure S3A). We also considered the possibility that
the binding of 21-3'U to the S1 might be compromised by
a stable stem-loop (SL1) in the HCV sequence that exists
between the seed match sequence and upstream HCV nu-
cleotides that are known to form 3" auxiliary base-pair inter-
actions with miR-122 (19) (Figure 1A). However, removal
of the stem-loop did not rescue recruitment of Ago2 to the
S1 site by 21-3'U (Supplementary Figure S3B).

Collectively, these results reveal that significant difference
exist in the targeting of the 21-3'U variant to the S1 versus
the S2 site in the HCV RNA. Changes in the 3’ terminal
nucleotide of 22 nt long miR-122 variants also conferred
substantial differences in HCV host factor activity when
targeted to S1 but not the S2 site. Replacing the 3’ termi-
nal 22G nucleotide with adenosine (22-3’ Ap6), uridine (22—
3’Upb6) or especially cytidine (22-3'Cp6) markedly reduced
the capacity of the 22-3'Gp6 variant to promote replica-
tion of either H77S.3 or HJ3-5 RNAs containing p6m mu-
tations at both sites (Figure 6C and Supplementary Figure
S4A). However, this difference was noted only when the 22
nt variant was targeted to the S1 site, as 22-3'Cp6 promoted
RNA replication as well as 22-3'Gp6 directed to S2 (Figure
6D). In contrast, when we replaced the 3’ terminal U of 23—
3'Up6 with guanosine, there was no reduction in its capacity
to promote HCV RNA replication (Supplementary Figure
S4B). This demonstrates that it is the guanosine residue at
nt 22 of miR-122 that is important, not the presence of a
guanosine at the 3’ terminal position.

Collectively, these results show that the capacity of miR-
122 to facilitate the replication of HCV is strongly depen-
dent upon both its length and the presence of a guanosine
at nt 22, with length being a more important factor.
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dissociation of passenger strand RNA from newly formed
miRISC complexes remains uncertain, although the GLD2
polymerase is more active on a single-strand substrate sug-
gesting it may act after passenger strand loss (27).

CLEAR-CLIP studies have suggested that the 3’ termi-
nal nucleotides of miR-122 influence its selection of mRINA
targets in Huh-7 cells (26), but whether differences in the 3’
sequence also affect HCV host factor activity has not been
studied. Our results suggest several important conclusions.
The first is that there is a substantial, previously unrecog-
nized difference in the structural and sequence requirements
for miR-122 to function optimally as an HCV replication
factor versus its canonical role in regulating host gene ex-
pression. Both the length and base composition of the 3’ end
of miR-122 is critically important in determining its ability
to promote HCV replication, but not gene regulation. This
is evidenced by the fact that the 21-3’U isoform loads into
Ago2 and functions in suppressing gene expression (Figures
2B, 5A and B), but fails to promote HCV replication (Fig-
ures 3C and 4D and E; Supplementary Figure S1). A related
but equally important conclusion is that the current model
of the interaction of miR-122 with HCV RNA (Figure 1A)
isincomplete, as it offers no explanation for the requirement
that miR-122 be at least 22 nts in length with a guanosine
at position 22 (Figure 6C and Supplementary Figure S4A).
While we do not fully understand the molecular basis for
these requirements, we have shown that it centers on the in-
ability of miR-122 isoforms lacking these criteria to func-
tionally bind the S1 site that plays the major role in driving
genome replication. A third major conclusion is that HCV
replication is likely driven to a substantial extent by a mi-
nor 3’ miR-122 variant, 23-3'U. A review of previously de-
scribed Ago2 CLEAR-CLIP data from HCV-infected cells
(15) suggests that 23-3'U comprises about 26% of endoge-
nously expressed miR-122 isoforms binding the 5’ end of
the viral RNA, whereas the major, canonical 22-3'G iso-
form represents about 63% (Figure 2C). Since the 23-3'U
variant is ~3-fold as active as 22-3'G in promoting HCV
replication (Figures 3C, 4E and Supplementary Figure S1),
both variants likely contribute equivalently to HCV repli-
cation.

miR-122 promotes the replication of HCV by two distinct
mechanisms. First, by binding to the S1 and S2 sites in asso-
ciation with Ago2, miR-122 physically stabilizes the RNA,
slowing its rate of decay by protecting it from the major cy-
toplasmic 5 exoribonuclease, Xrn1 (8,11-12,36). A number
of studies have also suggested that miR-122 might act to en-
hance HCV IRES-directed translation (9,18,37-38). How-
ever, it is difficult to distinguish the impact of enhanced
RNA template stability from greater IRES efficiency in
driving increases in viral protein expression, particularly
in biologically relevant cell-based studies using full-length,
replication-competent viral RNAs. When protection from
Xrnl-mediated 5 HCV RNA decay is carefully controlled
for, we and others have concluded that most if not all miR-
122-driven increases in protein translation are due to en-
hanced RNA template stability (4,12-13). We have shown
recently that miR-122 directly stimulates the synthesis of
HCV RNA within infected cells as measured by increases in
the rate of incorporation of 5-ethynyl uridine into nascent
HCV RNA (13). Notably, this occurs in the absence of any
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increase in [*S]-Met incorporation into nascent viral pro-
tein (13).

Although miR-122-mediated stabilization of HCV RNA
and increased viral RNA synthesis are antithetical to the
typical actions of miRNAs in downregulating host gene ex-
pression, both of these actions are dependent upon Ago2
(8-9,13). Previous studies have suggested that the recruit-
ment of Ago2 to the viral RNA by miR-122 follows a
canonical pattern of miRNA binding at both the SI and
S2 sites (17-19), with targeting dependent upon both the
seed sequence (nt 2-8) of the guide strand as well as supple-
mentary base pairs involving nts 13-16 that often stabilize
miRNA target interactions to repress translation and desta-
bilize mRNAs (34,39-40). Current models for the interac-
tions of miR-122 with the 5’ end of the viral RNA, such as
that shown in Figure 1A (17-19), thus show most of the 5’
40 nucleotides of HCV RNA to be engaged in base pair-
ing, either with other HCV bases in stem-loop 1 (SL1), or
in interactions with one of two copies of miR-122. These
models predict no involvement of the 3’ terminal 5-7 nts of
miR-122 (Figure 1A). Thus, it is surprising that only miR-
122 species equal to or longer than 22 nucleotides support
HCYV replication (Figure 3C), and that there is a strong pref-
erence for the canonical guanosine at nt 22 (Figures 3C, 6C
and Supplementary Figure S4A), as we show here.

Our data demonstrate that nts 22-23 of miR-122 play a
key role in binding to and recruiting Ago2 to the S1 site
within the HCV genome (Figure 6A), as well as to the S1 site
in mRNA reporter transcripts containing nts 1-45 of HCV
RNA within their 3’UTR (Figure 5D). In contrast, Ago2-
targeting to the S2 site was not sensitive to changes in ei-
ther the length or composition of the 3’ terminal nucleotides
of miR-122. While 3’ adenylation can increase the physical
stability of miR-122 (27), reduced stability cannot explain
the selective absence of HCV host factor activity associated
with the 21-3'U variant as it was fully functional in sup-
pressing RLuc expression from reporter mRNAs contain-
ing its native SLC7A1 3'UTR target sequence (Figure 5A).
These data also exclude insufficient transfection as an ex-
planation for the failure of 21-3'U to support HCV genome
replication. The S1-site specific nature of the 21-3'U variant
also argues against the notion that variation in the length
and composition of the 3’ nts 22-23 is simply affecting the
stability of miR-122 (Figures 5D and 6A).

The binding of miR-122 to S1 is dominant over S2 in fa-
cilitating HCV RNA replication (7,12,19). Thus, substitu-
tions that ablate miR-122 binding to S1 have a more severe
impact on replication than those that ablate binding to S2,
which is in quantitative agreement with the two-fold greater
abundance of RNA pulled down by antibody to Ago2 when
miR-122 is directed to the S1 rather than the S2 site (Fig-
ure 6A). This is consistent with the fact that S1 contains a
7 base seed-match site that base-pairs with nts 2-8 of miR-
122 as well as an adenosine nucleotide opposite miR-122 nt
1 that is likely to increase the affinity to Ago2 (34). In con-
trast, S2 has a shorter, 6 base seed-match target that pairs
with nts 2-7 of miR-122. Thus, a greater affinity for Ago2—
miR-122 complex formation at the S1 site is likely to be the
basis for its dominance over S2. This may explain why the
inability of the 21-3'U variant to recruit Ago2 to S1 (Fig-
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ure 6), despite its efficient loading into Ago2 (Figure 2B),
is so severely detrimental to its functions in stabilizing and
promoting replication of HCV RNA. This dominance of
complex formation at S1 over S2 is not evident in miR-122
suppression of reporter mRNA transcripts containing the
HCYV target sequence within their 3’ UTR. Although the S1
site also fails to bind 21-3’U when placed in the 3UTR of
such transcripts (Figure 5D), 21-3'U demonstrated surpris-
ingly little diminution in its miRISC activity in these assays
(Figure 5A and B).

Our findings stand in contrast to a previous report de-
scribing cell-free biophysical experiments that suggested
miR-122 binds with greater affinity at the S2 site than
at S1 (20). These studies examined interactions between
RNA representing the SUTR of HCV and miR-122 guide
molecules in the absence of Ago2 and other cellular RNA
binding proteins in a reconstituted in vitro system, and
yielded very different results from what we observed in our
cell-based system. Whereas we found that 21-3'U failed to
bind and recruit Ago2 to the S1 site (Figure 6A), a 19 nt
miR-122 mutant (A20-23) appeared capable of function-
ally binding to both S1 and S2 in vitro (20). This difference
highlights the potential importance of Ago2, which was ab-
sent in the in vitro studies, in miR-122 target selection.

Although binding to the S1 site is dominant in the host
factor activity of miR-122, the miRNA has a greater im-
pact on replication when bound to both tandem sites than
when bound to either alone (10,12,19). Recent studies of the
binding of miRNAs to closely spaced target sites show that
the shuttling of an Ago2-miRNA complex between neigh-
boring sites on a single RNA molecule synergistically pro-
motes Ago?2 retention time during initial interactions with
the target RNA, providing a mechanism by which RNAs
containing adjacent miRNA binding sites may function as
potent miRNA sponges (16,23). Importantly, dynamic in-
teractions between the 3’ end of the guide strand and the
Argonaute protein PAZ domain can have a substantial in-
fluence on this process, potentially regulating Ago2 shut-
tling between adjacent target sites (23,41). In an effort to
determine whether anchoring of the 3’ terminal nucleotides
in the PAZ domain plays a distinct role in miR-122 target
selection at S1 versus S2, we biotinylated 23-3'Up6 at its
3’ end, a modification that should disrupt such anchoring.
This 3’ biotinylated miR-122 failed to promote HCV RNA
replication when directed to either the S1 or S2 site, and it
had very little activity in suppressing translation of reporter
RNA transcripts containing either the HCV or SLC7A1
target sequences in their 3’'UTR (data not shown). However,
the fact that the 21-3'U-Ago2 complex selectively fails to be
recruited to S1 in the absence of a functional S2 site (Fig-
ures 5D and 6A) argues against this resulting from a defect
in lateral diffusion between the two sites.

In summary, the HCV host factor activity of miR-122 en-
tails a strict requirement for a length of at least 22 nts and
a preference for guanosine at nt 22 for functional target-
ing of the S1 site in the RNA genome of HCV. Why this is
so remains enigmatic. Although the preference for guano-
sine at nt 22 suggests the possibility of specific base-pairing,
this is not represented by any existing model of the com-
plex formed by the viral genome and miR-122, nor is there
any obvious nucleotide in the HCV sequence with which it

might pair. Unfortunately, past efforts to characterize the
structure of the S1 site in the presence and absence of miR-
122 using SHAPE have not yielded clear results (20,21), and
thus shed no light on this possibility. Both the length of
miR-122 and the presence or absence of G-22 could influ-
ence tethering of the 3’ miR NA tail within the PAZ domain
of Ago, which could be important for target site selection
(24), but an influence on interactions with a yet-to-be dis-
covered RNA-binding protein acting in concert with Ago2
cannot be excluded. The unique 3’ base composition and
length required for miR-122 HCV host factor activity is
likely to be explained only by a high resolution structural
analysis of the HCV RNA-miR-122-Ago2 ternary com-
plex.
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