7,646 research outputs found

    Fabrication and characterization of Si3N4 ceramics without additives by high pressure hot pressing

    Get PDF
    High pressure hot-pressing of Si3N4 without additives was performed using various kinds of Si3N4 powder as starting materials, and the relation between densification and alpha-beta phase transformation was studied. The temperature dependences of Vickers microhardness and fracture toughness were also examined. Densification of Si3N4 was divided into three stages, and it was found that densification and phase transformation of Si3N4 under pressure were closely associated. The results of the temperature dependence of Vickers microhardness indicated that the high-temperature hardness was strongly influenced not only by the density and microstructure of sintered body but also by the purity of starting powder. The fracture toughness values of Si3N4 bodies without additives were 3.29-4.39 MN/m to the 3/2 power and independent of temperature up to 1400 C

    Spontaneous exciton dissociation in carbon nanotubes

    Get PDF
    Simultaneous photoluminescence and photocurrent measurements on individual single-walled carbon nanotubes reveal spontaneous dissociation of excitons into free electron-hole pairs. Correlation of luminescence intensity and photocurrent shows that a significant fraction of excitons are dissociating during their relaxation into the lowest exciton state. Furthermore, the combination of optical and electrical signals also allows for extraction of the absorption cross section and the oscillator strength. Our observations explain the reasons for photoconductivity measurements in single-walled carbon nanotubes being straightforward despite the large exciton binding energies.Comment: 4 pages, 3 figure

    Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    Full text link
    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient.Comment: 4 page

    Gate-controlled generation of optical pulse trains using individual carbon nanotubes

    Get PDF
    We report on optical pulse-train generation from individual air-suspended carbon nanotubes under an application of square-wave gate voltages. Electrostatically-induced carrier accummulation quenches photoluminescence, while a voltage sign reversal purges those carriers, resetting the nanotubes to become luminescent temporarily. Frequency domain measurements reveal photoluminescence recovery with characteristic frequencies that increase with excitation laser power, showing that photoexcited carriers quench the emission in a self-limiting manner. Time-resolved measurements directly confirm the presence of an optical pulse train sychronized to the gate voltage signal, and flexible control over pulse timing and duration is demonstrated.Comment: 4 pages, 4 figure

    Transport Properties of Carbon Nanotube C60_{60} Peapods

    Full text link
    We measure the conductance of carbon nanotube peapods from room temperature down to 250mK. Our devices show both metallic and semiconducting behavior at room temperature. At the lowest temperatures, we observe single electron effects. Our results suggest that the encapsulated C60_{60} molecules do not introduce substantial backscattering for electrons near the Fermi level. This is remarkable given that previous tunneling spectroscopy measurements show that encapsulated C60_{60} strongly modifies the electronic structure of a nanotube away from the Fermi level.Comment: 9 pages, 4 figures. This is one of two manuscripts replacing the one orginally submitted as arXiv:cond-mat/0606258. The other one is arXiv:0704.3641 [cond-mat

    Measurement of electron correlations in LixCoO2 (x=0.0 - 0.35) using 59Co nuclear magnetic resonance and nuclear quadrupole resonance techniques

    Get PDF
    CoO2 is the parent compound for the superconductor NaxCoO2\cdot1.3H2O and was widely believed to be a Mott insulator. We performed 59Co nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies on LixCoO2 (x = 0.35, 0.25, 0.12, and 0.0) to uncover the electronic state and spin correlations in this series of compounds which was recently obtained through electrochemical de-intercalation of Li from pristine LiCoO2. We find that although the antiferromagnetic spin correlations systematically increase with decreasing Li-content (x), the end member, CoO2 is a non-correlated metal that well satisfies the Korringa relation for a Fermi liquid. Thus, CoO2 is not simply located at the limit of x->0 for AxCoO2 (A = Li, Na) compounds. The disappearance of the electron correlations in CoO2 is due to the three dimensionality of the compound which is in contrast to the highly two dimensional structure of AxCoO2.Comment: 4pages, 4figures, to be published in Phys.Rev.B. Rapid

    Electronic structures of Cr1−δ_{1-\delta}X (X=S, Te) studied by Cr 2p soft x-ray magnetic circular dichroism

    Get PDF
    Cr 2p core excited XAS and XMCD spectra of ferromagnetic Cr1−δ_{1-\delta}Te with several concentrations of δ\delta=0.11-0.33 and ferrimagnetic Cr5_{5}S6_{6} have been measured. The observed XMCD lineshapes are found to very weakly depend on δ\delta for Cr1−δ_{1-\delta}Te. The experimental results are analyzed by means of a configuration-interaction cluster model calculation with consideration of hybridization and electron correlation effects. The obtained values of the spin magnetic moment by the cluster model analyses are in agreement with the results of the band structure calculation.The calculated result shows that the doped holes created by the Cr deficiency exist mainly in the Te 5porbital of Cr1−δ_{1-\delta}Te, whereas the holes are likely to be in Cr 3d state for Cr5_{5}S6_{6}.Comment: 8 pages, 6 figures, accepted for publication in Physical Review

    Periodicity Manifestations in the Turbulent Regime of Globally Coupled Map Lattice

    Full text link
    We revisit the globally coupled map lattice (GCML). We show that in the so called turbulent regime various periodic cluster attractor states are formed even though the coupling between the maps are very small relative to the non-linearity in the element maps. Most outstanding is a maximally symmetric three cluster attractor in period three motion (MSCA) due to the foliation of the period three window of the element logistic maps. An analytic approach is proposed which explains successfully the systematics of various periodicity manifestations in the turbulent regime. The linear stability of the period three cluster attractors is investigated.Comment: 34 pages, 8 Postscript figures, all in GCML-MSCA.Zi
    • …
    corecore