39 research outputs found
Advanced remote sensing techniques for global changes and Amazon ecosystem functioning studies
This paper aims to assess the contribution of remote sensing technology in addressing key questions raised by the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). The answers to these questions foster the knowledge on the climatic, biogechemical and hydrologic functioning of the Amazon, as well as on the impact of human activities at regional and global scales. Remote sensing methods allow integrating information on several processes at different temporal and spatial scales. By doing so, it is possible to perceive hidden relations among processes and structures, enhancing their teleconnections. Key advances in the remote sensing science are summarized in this article, which is particularly focused on information that would not be possible to be retrieved without the concurrence of this technolog
Evidence-based Kernels: Fundamental Units of Behavioral Influence
This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior
Benchmarking predictive models in electronic health records : sepsis length of stay prediction
Forecasting Sepsis length of stay is a challenge for hospitals worldwide. Although there are many attempts to improve sepsis length of stay prediction; however, there is still lack of baselining prediction metrics that can give better results for sepsis length of stay prediction in management hospital systems. This paper introduces a research architecture to predict and benchmark the Length of Stay (LOS) for Sepsis diagnoses from electronic medical records using the machine learning models. The architecture considered the time factor to identify the outperforming algorithms for Sepsis LOS prediction. This work contributes to the field of predictive modelling and information visualization for hospital management systems. Our results showed that the ensemble methods in particular the random forest (RF) outdo other classification models to predict the LOS for Sepsis from electronic medical records for Intensive Care Unit “ICU”-based hospitalizations