4,496 research outputs found
Susceptibility of Several Insecticides on Three Aphids
Differences in susceptibility of several organophosphate, carbamate and pyrethroid insecticides to three aphids species were determined by leaf-dipping and spray methods. The insects tested were the apterous adults of the green peach aphid (Myzus persicae), cotton aphid (Aphis gossypii) and soybean aphid (Aphis glycines). The comparison of LC50 levels was indicated as follows: (1) The susceptibility to insecticides tested were greatly varied with the test methods. (2) The leaf-dipping method is more recommendable than the spray method for c insecticide screening with aphids. It was easier, more accurate and less variable than the latter. (3) The susceptibility to insecticides was greatly varied between the aphid species. Soybean aphid was more susceptible to the insecticides than green peach aphid and cotton aphid. Exceptionally, pirimicarb was not effective on the cotton aphid.Originating text in Korean.Citation: Kim, G. H., Shim, W. K., Ahn, J. W., Cho, K. Y. (1987). Susceptibility of Several Insecticides on Three Aphids. Korean Journal of Plant Protection, 26(2), 83-88
Retraction notice: Influence of compressing pressure on macro void formation carbon monolith for methane adsorption
RETRACTION NOTICEOn 21rd February 2019, the Editorial Board of the Mongolian Journal of Chemistry decided to retract this article entitled "Influence of compressing pressure on macro void formation of carbon monolith for methane adsorption" because of an authorship dispute. The article was originally published in Vol.18 No.44 2017 pp.24-35. doi: https://doi.org/10.5564/mjc.v18i44.93
Influence of compressing pressure on macro void formation of carbon monolith for methane adsorption
Carbon monoliths for adsorbed natural gas (ANG) storage were prepared from Mongolian anthracite-based activated carbons using carboxy-methyl cellulose as a binder under different compressing pressures. Nitrogen adsorption/desorption experiments were carried out to obtain the specific surface area, pore volume, and pore size distribution of the monoliths. Methane adsorption experiments on the carbon monoliths were conducted at different temperatures and pressures up to around 3.5 MPa in a high pressure volumetric adsorption apparatus. As expected, adsorption results indicated that the methane adsorption capacity of the carbon monoliths increased with increasing specific surface area and packing density. The maximum volumetric adsorption of methane was observed as 163 V/V at 293 K and 3.5 MPa on a carbon monolith sample, PMAC1/2-3-65, that does not have the highest specific surface area but relatively high packing density comparing with other monoliths, which implies that two physical properties contribute contradictorily to the methane adsorption capacity. Based on experimental results, the carbon monoliths prepared from Mongolian anthracite-based activated carbons can be promising media for ANG storage application
Chaotic exploration and learning of locomotion behaviours
We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage
Phenomenological Impacts of the CP-odd Rephase-Invariant Phase of the Chargino Mass Matrix in the Production of Light Chargino-Pair in Collisions
One CP--odd rephase-invariant phase appears in the chargino mass matrix in
the minimal Supersymmetric Standard Model. We investigate in detail the
phenomenological impacts of the CP-odd complex phase in the production of light
charginos in annihilation. The values of the chargino masses and the
mixing angles, determining the size of the wino and higgsino components in the
chargino wave functions, are so sensitive to the CP-odd phase that the
constraints on the supersymmetric parameters based on the conventional
assumptions for the parameters are recommended to be re-evaluated including the
CP-odd phase.Comment: 9 pages, latex with 3 eps figur
Electronic structures of ZnCoO using photoemission and x-ray absorption spectroscopy
Electronic structures of ZnCoO have been investigated using
photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The
Co 3d states are found to lie near the top of the O valence band, with a
peak around eV binding energy. The Co XAS spectrum provides
evidence that the Co ions in ZnCoO are in the divalent Co
() states under the tetrahedral symmetry. Our finding indicates that the
properly substituted Co ions for Zn sites will not produce the diluted
ferromagnetic semiconductor property.Comment: 3 pages, 2 figure
Electronic structure of YbB: Is it a Topological Insulator or not?
To resolve the controversial issue of the topological nature of the
electronic structure of YbB, we have made a combined study using density
functional theory (DFT) and angle resolved photoemission spectroscopy (ARPES).
Accurate determination of the low energy band topology in DFT requires the use
of modified Becke-Johnson exchange potential incorporating the spin-orbit
coupling and the on-site Coulomb interaction of Yb electrons as large
as 7 eV. We have double-checked the DFT result with the more precise GW band
calculation. ARPES is done with the non-polar (110) surface termination to
avoid band bending and quantum well confinement that have confused ARPES
spectra taken on the polar (001) surface termination. Thereby we show
definitively that YbB has a topologically trivial B 2-Yb 5
semiconductor band gap, and hence is a non-Kondo non-topological insulator
(TI). In agreement with theory, ARPES shows pure divalency for Yb and a -
band gap of 0.3 eV, which clearly rules out both of the previous scenarios of
- band inversion Kondo TI and - band inversion non-Kondo TI. We
have also examined the pressure-dependent electronic structure of YbB,
and found that the high pressure phase is not a Kondo TI but a
\emph{p}-\emph{d} overlap semimetal.Comment: The main text is 6 pages with 4 figures, and the supplementary
information contains 6 figures. 11 pages, 10 figures in total To be appeared
in Phys. Rev. Lett. (Online publication is around March 16 if no delays.
- …