7,085 research outputs found
Electronic Structures of Antiperovskite Superconductor MgCNi and Related Compounds
Electronic structure of a newly discovered antiperovskite superconductor
MgCNi is investigated by using the LMTO band method. The main contribution
to the density of states (DOS) at the Fermi energy comes from Ni
3 states which are hybridized with C 2 states. The DOS at is
varied substantially by the hole or electron doping due to the very high and
narrow DOS peak located just below . We have also explored
electronic structures of C-site and Mg-site doped MgCNi systems, and
described the superconductivity in terms of the conventional phonon mechanism.Comment: 3 pages, presented at ORBITAL2001 September 11-14, 2001 (Sendai,
JAPAN
Electronic structures of antiperovskite superconductors: MgXNi (X=B,C,N)
We have investigated electronic structures of a newly discovered
antiperovskite superconductor MgCNi and related compounds MgBNi and
MgNNi. In MgCNi, a peak of very narrow and high density of states is
located just below , which corresponds to the antibonding
state of Ni-3d and C- but with the predominant Ni-3d character. The
prominent nesting feature is observed in the -centered electron Fermi
surface of an octahedron-cage-like shape that originates from the 19th band.
The estimated superconducting parameters based on the simple rigid-ion
approximation are in reasonable agreement with experiment, suggesting that the
superconductivity in MgCNi is described well by the conventional phonon
mechanism.Comment: 5 pages, 5 figure
Electronic structure of metallic antiperovskite compound GaCMn
We have investigated electronic structures of antiperovskite GaCMn and
related Mn compounds SnCMn, ZnCMn, and ZnNMn. In the paramagnetic
state of GaCMn, the Fermi surface nesting feature along the
direction is observed, which induces the antiferromagnetic (AFM) spin ordering
with the nesting vector {\bf Q} . Calculated
susceptibilities confirm the nesting scenario for GaCMn and also explain
various magnetic structures of other antiperovskite compounds. Through the band
folding effect, the AFM phase of GaCMn is stabilized. Nearly equal
densities of states at the Fermi level in the ferromagnetic and AFM phases of
GaCMn indicate that two phases are competing in the ground state.Comment: 4 pages, 5 figure
Spin-Orbit Qubits of Rare-Earth-Metal Ions in Axially Symmetric Crystal Fields
Contrary to the well known spin qubits, rare-earth qubits are characterized
by a strong influence of crystal field due to large spin-orbit coupling. At low
temperature and in the presence of resonance microwaves, it is the magnetic
moment of the crystal-field ground-state which nutates (for several s) and
the Rabi frequency is anisotropic. Here, we present a study of the
variations of with the magnitude and direction of the
static magnetic field for the odd Er isotope in a single
crystal CaWO:Er. The hyperfine interactions split the
curve into eight different curves which are fitted
numerically and described analytically. These "spin-orbit qubits" should allow
detailed studies of decoherence mechanisms which become relevant at high
temperature and open new ways for qubit addressing using properly oriented
magnetic fields
- …