673 research outputs found

    Role of delamination and interlaminar fatigue in the failure of laminates with ply dropoffs

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2002.Includes bibliographical references (p. [407]-412).Analytical and experimental investigations were conducted on laminates with ply dropoffs to better understand the interlaminar stress field and delamination/damage characteristics in such laminates, as well as the relationship between the two based on the strength of materials approach. To gain key insights into the mechanisms and structural parameters that cause interlaminar stresses, analytical models for laminates with simple ply dropoff configurations were developed based on a systematic and hierarchical approach. Mathematically, these individual models are formulated using the stress function method in which the form of the admissible stress field is assumed a priori based on the stress field from the classical laminated plate theory and other functional constraints of the problem. The results are validated via comparisons with numerical solutions from previous investigations and as performed in the current work. Various structural parameters such as the taper angle and the location of the terminated plies are found to affect the interlaminar stress distribution. Careful consideration of the characteristics and trends of the interlaminar stresses in such laminates reveals that two fundamental mechanisms give rise to interlaminar stresses: the termination effect, that is caused by the load transfer from the terminated ply group to the continuous plies; and the offset effect, that is caused by the redistribution of the load from the undropped region to the dropped region in the outer continuous plies through an offset in the through-thickness direction. These mechanisms, the factors that affect them, and their utility are described and discussed in detail.(cont.) Factors of particular importance are the magnitudes of the far-field loads in the terminated and the outer continuous ply groups, the offset distance, and the taper angle. Experiments are conducted on unidirectional laminate configurations under static and cyclic loads to establish delamination/damage trends when the number and location of the terminated plies are varied. Under both loading conditions, delamination is found to be the dominant damage mode, although other modes, e.g., ply splits, occur. In certain types of specimens under cyclic loading, delaminations in different regions have different growth characteristics causing delaminations in one region to be a greater concern than in another region because the length of the delaminations increases indefinitely. In general, the experimental observations regarding delamination/damage are consistent with expectations based on the stress analysis. Delaminations are generally observed along interfaces where the interlaminar stresses are greatest, and static delamination loads are higher in laminates with lower interlaminar stresses. Quantitative predictions of the delamination loads using the Quadratic Delamination Criterion with the average stress method do not agree as well with the experimental data because a single value for the averaging length could not be obtained. The possible causes for the apparent non-uniqueness of the averaging length and its implications are further discussed. Based on this investigation, further recommendations for work on laminates with ply dropoffs are proposed.by Dong Jin Shim.Ph.D

    UNCERTAINTY PROPAGATION ANALYSIS FOR YONGGWANG NUCLEAR UNIT 4 BY MCCARD/MASTER CORE ANALYSIS SYSTEM

    Get PDF
    This paper concerns estimating uncertainties of the core neutronics design parameters of power reactors by direct sampling method (DSM) calculations based on the two-step McCARD/MASTER design system in which McCARD is used to generate the fuel assembly (FA) homogenized few group constants (FGCs) while MASTER is used to conduct the core neutronics design computation. It presents an extended application of the uncertainty propagation analysis method originally designed for uncertainty quantification of the FA FGCs as a way to produce the covariances between the FGCs of any pair of FAs comprising the core, or the covariance matrix of the FA FGCs required for random sampling of the FA FGCs input sets into direct sampling core calculations by MASTER. For illustrative purposes, the uncertainties of core design parameters such as the effective multiplication factor (keff), normalized FA power densities, power peaking factors, etc. for the beginning of life (BOL) core of Yonggwang nuclear unit 4 (YGN4) at the hot zero power and all rods out are estimated by the McCARD/MASTER-based DSM computations. The results are compared with those from the uncertainty propagation analysis method based on the McCARD-predicted sensitivity coefficients of nuclear design parameters and the cross section covariance data

    Low-temperature synthesis of CuO-interlaced nanodiscs for lithium ion battery electrodes

    Get PDF
    In this study, we report the high-yield synthesis of 2-dimensional cupric oxide (CuO) nanodiscs through dehydrogenation of 1-dimensional Cu(OH)2 nanowires at 60°C. Most of the nanodiscs had a diameter of approximately 500 nm and a thickness of approximately 50 nm. After further prolonged reaction times, secondary irregular nanodiscs gradually grew vertically into regular nanodiscs. These CuO nanostructures were characterized using X-ray diffraction, transmission electron microscopy, and Brunauer-Emmett-Teller measurements. The possible growth mechanism of the interlaced disc CuO nanostructures is systematically discussed. The electrochemical performances of the CuO nanodisc electrodes were evaluated in detail using cyclic voltammetry and galvanostatic cycling. Furthermore, we demonstrate that the incorporation of multiwalled carbon nanotubes enables the enhanced reversible capacities and capacity retention of CuO nanodisc electrodes on cycling by offering more efficient electron transport paths

    Delayed Rupture of an Anterior Communicating Artery Pseudoaneurysm Caused by Distal Occlusion Thrombectomy Using a Stent Retriever: A Case Report and Mechanism of Injury

    Get PDF
    We report a case of delayed rupture of an anterior communicating artery (Acom) pseudoaneurysm following mechanical thrombectomy (MT) of a distal artery occlusion using a stent retriever. An elderly patient with right hemiparesis showed left proximal internal cerebral artery and middle cerebral artery occlusions. During MT, a fragmented thrombus moved to the anterior cerebral artery (ACA). A stent retriever was deployed to the occluded ACA, and the Acom and proximal ACA segment were significantly straightened. Additionally, we attempted a blind exchange mini-pinning (BEMP) technique, but a subarachnoid hemorrhage (SAH) occurred. Bleeding was almost entirely absorbed 9 days after the procedure, but the SAH recurred at 20 days, and computed tomography angiography revealed a new pseudoaneurysm formation in the Acom. We suggest that the proposed mechanism of pseudoaneurysm formation was likely due to the dislocation and avulsion of the Acom perforators when the ipsilateral ACA was pushed and pulled during MT

    Facile synthesis of nano-Li4 Ti5O12 for high-rate Li-ion battery anodes

    Get PDF
    One of the most promising anode materials for Li-ion batteries, Li4Ti5O12, has attracted attention because it is a zero-strain Li insertion host having a stable insertion potential. In this study, we suggest two different synthetic processes to prepare Li4Ti5O12 using anatase TiO2 nanoprecursors. TiO2 powders, which have extraordinarily large surface areas of more than 250 m2 g-1, were initially prepared through the urea-forced hydrolysis/precipitation route below 100°C. For the synthesis of Li4Ti5O12, LiOH and Li2CO3 were added to TiO2 solutions prepared in water and ethanol media, respectively. The powders were subsequently dried and calcined at various temperatures. The phase and morphological transitions from TiO2 to Li4Ti5O12 were characterized using X-ray powder diffraction and transmission electron microscopy. The electrochemical performance of nanosized Li4Ti5O12 was evaluated in detail by cyclic voltammetry and galvanostatic cycling. Furthermore, the high-rate performance and long-term cycle stability of Li4Ti5O12 anodes for use in Li-ion batteries were discussed

    Screening models using multiple markers for early detection of late-onset preeclampsia in low-risk pregnancy

    Get PDF
    BACKGROUND: Our primary objective was to establish a cutoff value for the soluble fms-like tyrosine kinase 1(sFlt-1)/placental growth factor (PlGF) ratio measured using the Elecsys assay to predict late-onset preeclampsia in low-risk pregnancies. Our secondary objective was to evaluate the ability of combination models using Elecsys data, second trimester uterine artery (UtA) Doppler ultrasonography measurements, and the serum fetoplacental protein levels used for Down’s syndrome screening, to predict preeclampsia. METHODS: This prospective cohort study included 262 pregnant women with a low risk of preeclampsia. Plasma levels of pregnancy-associated plasma protein-A (PAPP-A) and serum levels of alpha-fetoprotein, unconjugated estriol, human chorionic gonadotropin, and inhibin-A were measured, and sFlt-1/PlGF ratios were calculated. All women underwent UtA Doppler ultrasonography at 20 to 24 weeks of gestation. RESULTS: Eight of the 262 women (3.0%) developed late-onset preeclampsia. Receiver operating characteristic curve analysis showed that the third trimester sFlt-1/PlGF ratio yielded the best detection rate (DR) for preeclampsia at a fixed false-positive rate (FPR) of 10%, followed by the second trimester sFlt-1/PlGF ratio, sFlt-1 level, and PlGF level. Binary logistic regression analysis was used to determine the five best combination models for early detection of late-onset preeclampsia. The combination of the PAPP-A level and the second trimester sFlt-1/PlGF ratio yielded a DR of 87.5% at a fixed FPR of 5%, the combination of second and third trimester sFlt-1/PlGF ratios yielded a DR of 87.5% at a fixed FPR of 10%, the combination of body mass index and the second trimester sFlt-1 level yielded a DR of 87.5% at a fixed FPR of 10%, the combination of the PAPP-A and inhibin-A levels yielded a DR of 50% at a fixed FPR of 10%, and the combination of the PAPP-A level and the third trimester sFlt-1/PlGF ratio yielded a DR of 62.5% at a fixed FPR of 10%. CONCLUSIONS: The combination of the PAPP-A level and the second trimester sFlt-1/PlGF ratio, and the combination of the second trimester sFlt-1 level with body mass index, were better predictors of late-onset preeclampsia than any individual marker

    Precise stacking of decellularized extracellular matrix based 3D cell-laden constructs by a 3D cell printing system equipped with heating modules

    Get PDF
    Three-dimensional (3D) cell printing systems allow the controlled and precise deposition of multiple cells in 3D constructs. Hydrogel materials have been used extensively as printable bioinks owing to their ability to safely encapsulate living cells. However, hydrogel-based bioinks have drawbacks for cell printing, e.g. inappropriate crosslinking and liquid-like rheological properties, which hinder precise 3D shaping. Therefore, in this study, we investigated the influence of various factors (e.g. bioink concentration, viscosity, and extent of crosslinking) on cell printing and established a new 3D cell printing system equipped with heating modules for the precise stacking of decellularized extracellular matrix (dECM)-based 3D cell-laden constructs. Because the pH-adjusted bioink isolated from native tissue is safely gelled at 37 degrees C, our heating system facilitated the precise stacking of dECM bioinks by enabling simultaneous gelation during printing. We observed greater printability compared with that of a non-heating system. These results were confirmed by mechanical testing and 3D construct stacking analyses. We also confirmed that our heating system did not elicit negative effects, such as cell death, in the printed cells. Conclusively, these results hold promise for the application of 3D bioprinting to tissue engineering and drug development.119Ysciescopu

    Locally-applied 5-fluorouracil-loaded slow-release patch prevents pancreatic cancer growth in an orthotopic mouse model

    Get PDF
    To obtain improved efficacy against pancreatic cancer, we investigated the efficacy and safety of a locally-applied 5-fluorouracil (5-FU)-loaded polymeric patch on pancreatic tumors in an orthotopic nude-mouse model. The 5-FU-releasing polymeric patch was produced by 3D printing. After application of the patch, it released the drug slowly for 4 weeks, and suppressed BxPC-3 pancreas cancer growth. Luciferase imaging of BxPC3-Luc cells implanted in the pancreas was performed longitudinally. The drug patch delivered a 30.2 times higher level of 5-FU than an intra-peritoneal (i.p.) bolus injection on day-1. High 5-FU levels were accumulated within one week by the patch. Four groups were compared for efficacy of 5-FU. Drug-free patch as a negative control (Group I); 30% 5-FU-loaded patch (4.8 mg) (Group II); 5-FU i.p. once (4.8 mg) (Group III); 5-FU i.p. once a week (1.2 mg), three times (Group IV). The tumor growth rate was significantly faster in Group I than Group II, III, IV (p=0.047 at day-8, p=0.022 at day-12, p=0.002 at day-18 and p=0.034 at day-21). All mice in Group III died of drug toxicity within two weeks after injection. Group II showed more effective suppression of tumor growth than Group IV (p=0.018 at day-12 and p=0.017 at day-21). Histological analysis showed extensive apoptosis in the TUNEL assay and by Ki -67 staining. Western blotting confirmed strong expression of cleaved caspase-3 in Group II. No significant changes were found hematologically and histologically in the liver, kidney and spleen in Groups I, II, IV but were found in Group III.113Ysciescopu

    Cellular and Tissue Selectivity of AAV Serotypes for Gene Delivery to Chondrocytes and Cartilage

    Get PDF
    Background: Despite several studies on the effect of adeno-associated virus (AAV)-based therapeutics on osteoarthritis (OA), information on the transduction efficiency and applicable profiles of different AAV serotypes to chondrocytes in hard cartilage tissue is still limited. Moreover, the recent discovery of additional AAV serotypes makes it necessary to screen for more suitable AAV serotypes for specific tissues. Here, we compared the transduction efficiencies of 14 conventional AAV serotypes in human chondrocytes, mouse OA models, and human cartilage explants obtained from OA patients. Methods: To compare the transduction efficiency of individual AAV serotypes, green fluorescent protein (GFP) expression was detected by fluorescence microscopy or western blotting. Likewise, to compare the transduction efficiencies of individual AAV serotypes in cartilage tissues, GFP expression was determined using fluorescence microscopy or immunohistochemistry, and GFP-positive cells were counted. Results: Only AAV2, 5, 6, and 6.2 exhibited substantial transduction efficiencies in both normal and OA chondrocytes. All AAV serotypes except AAV6 and rh43 could effectively transduce human bone marrow mesenchymal stem cells. In human and mouse OA cartilage tissues, AAV2, AAV5, AAV6.2, AAV8, and AAV rh39 showed excellent tissue specificity based on transduction efficiency. These results indicate the differences in transduction efficiencies of AAV serotypes between cellular and tissue models. Conclusions: Our findings indicate that AAV2 and AAV6.2 may be the best choices for AAV-mediated gene delivery into intra-articular cartilage tissue. These AAV vectors hold the potential to be of use in clinical applications to prevent OA progression if appropriate therapeutic genes are inserted into the vector
    corecore