133 research outputs found

    The effect of surface treatment and rolling direction on the fatigue behavior of grade one commercially pure titanium

    Full text link
    Fully-reversed bending fatigue tests were conducted on both the as-received and finished grade one commercially pure titanium. Finishing is done by a process developed by TiMesh Inc., and known as TiMesh finishing. Results show that TiMesh finishing can not only increase material fatigue life at least by two times at the stress level of 25 Ksi, but also eliminate the anisotropic fatigue behavior observed in the as-received materials

    Ring-modulator-based RoF system with local SSB modulation and remote carrier reuse

    Get PDF
    A full-duplex radio-over-fibre (RoF) system based on an integrated silicon ring modulator is proposed and demonstrated. For the downstream link, a coherent dual-wavelength laser source is coupled to a silicon ring modulator in the central office (CO). Since only one of the optical carriers in the dual-wavelength laser source is aligned to the resonance of the ring modulator, a single sideband (SSB) modulated optical downstream signal is obtained, which is able to combat the power fading introduced by the fibre dispersion. Besides, for the upstream link, the unmodulated optical carrier in the SSB-modulated optical downstream signal is reused by using an optical filter in the remote radio head. After being modulated by the upstream data, the optical upstream signal is transmitted back to the CO. A proof-of-concept experiment is carried out. Error vector magnitudes of 21-GHz downstream and 10-GHz upstream signals are measured, which confirms that the proposed architecture is a promising lowcost solution for future high-speed wireless communication systems

    Full-duplex analog radio-over-fiber system based on an integrated transceiver with a silicon microring modulator and a transfer-printed III-V photodetector

    Get PDF
    A full-duplex analog radio-over-fiber (RoF) system based on an integrated transceiver is proposed. The transceiver incorporates a C-band silicon microring modulator for the electrical-to-optical (E-O) conversion of the downstream signal and an O-band III-V photodetector (PD) is transfer printed onto the same chip for the optical-to-electrical (O-E) conversion of the upstream signal. With the integrated transceiver, a proof-of-concept experiment is carried out. An error vector magnitude (EVM) less than 6 % is achieved in the X-band for a 1-Gbps 16QAM-modulated signal transmitted through 5-km single mode fiber. Keywords: radio transceivers, microwave photonics, silicon photonics, photodetector

    Modeling and 3D Simulation of the Mould Compression and Resin Flow for Force-Controlled Compression Resin Transfer Moulding

    Get PDF
    Since the existence of the complicated coupling between mould compression and resin flow, the full 3D simulation of the filling process in force-controlled compression resin transfer moulding (CRTM) has not been realized, especially when the resin flow front is irregular on the thickness direction during thick part moulding. In this paper, the coupled resin flow and mould compression behaviors are investigated firstly, a equivalent spring method is proposed to describe the preform compaction. The lubrication effect is taken into account, so the mould compression speed can be determined when the resin flow front is irregular on the thickness direction. Then the Volume of Fluid (VOF) two-phase model is established to express the resin-air flow in narrow gap and preform simultaneously, in which the narrow gap is considered as 3D area without flow resistance. Finally, the 3D numerical method for solving the above mathematical models is developed. In this method, the changing of the mould cavity is simulated by moving mesh technology, and the master-slave element method is used to simulate the resin squeezing from the infiltrated preform. Comparisons with analysis results are provided to prove the correctness of the above method, and two 3D examples are given to demonstrate the simulating capability

    Emerging opportunities and challenges in phenology: a review

    Get PDF
    Plant phenology research has gained increasing attention because of the sensitivity of phenology to climate change and its consequences for ecosystem function. Recent technological development has made it possible to gather invaluable data at a variety of spatial and ecological scales. Despite our ability to observe phenological change at multiple scales, the mechanistic basis of phenology is still not well understood. Integration of multiple disciplines, including ecology, evolutionary biology, climate science, and remote sensing, with long-term monitoring data across multiple spatial scales are needed to advance understanding of phenology. We review the mechanisms and major drivers of plant phenology, including temperature, photoperiod, and winter chilling, as well as other factors such as competition, resource limitation, and genetics. Shifts in plant phenology have significant consequences on ecosystem productivity, carbon cycling, competition, food webs, and other ecosystem functions and services. We summarize recent advances in observation techniques across multiple spatial scales, including digital repeat photography, other complementary optical measurements, and solar induced fluorescence, to assess our capability to address the importance of these scale-dependent drivers. Then we review phenology models as an important component of earth system modeling. We find that the lack of species-level knowledge and observation data lead to difficulties in the development of vegetation phenology models at ecosystem or community scales. Finally, we recommend further research to advance understanding of the mechanisms governing phenology and the standardization of phenology observation methods across networks. With the opportunity for “big data” collection for plant phenology, we envision a breakthrough in process-based phenology modeling

    Detection and attribution of nitrogen runoff trend in China's croplands

    Get PDF
    Reliable detection and attribution of changes in nitrogen (N) runoff from croplands are essential for designing efficient, sustainable N management strategies for future. Despite the recognition that excess N runoff poses a risk of aquatic eutrophication, large-scale, spatially detailed N runoff trends and their drivers remain poorly understood in China. Based on data comprising 535 site-years from 100 sites across China's croplands, we developed a data-driven upscaling model and a new simplified attribution approach to detect and attribute N runoff trends during the period of 1990–2012. Our results show that N runoff has increased by 46% for rice paddy fields and 31% for upland areas since 1990. However, we acknowledge that the upscaling model is subject to large uncertainties (20% and 40% as coefficient of variation of N runoff, respectively). At national scale, increased fertilizer application was identified as the most likely driver of the N runoff trend, while decreased irrigation levels offset to some extent the impact of fertilization increases. In southern China, the increasing trend of upland N runoff can be attributed to the growth in N runoff rates. Our results suggested that increased SOM led to the N runoff rate growth for uplands, but led to a decline for rice paddy fields. In combination, these results imply that improving management approaches for both N fertilizer use and irrigation is urgently required for mitigating agricultural N runoff in China
    corecore