114 research outputs found
Stabilization of Neutral Thin Shells By Gravitational Effects From Electric Fields
We study the properties of a system consisting of an uncharged spherically
symmetric two dimensional extended object which encloses a stationary point
charge placed in the shell's center. We show that there can be a static and
stable configuration for the neutral shell, using only the gravitational field
of the charged source as a stabilizing mechanism. In particular, two types of
shells are studied: a dust shell and a string gas shell. The dynamical
possibilities are also analyzed, including the possibility of child universe
creation.Comment: 5 pages, 1 figur
New Superconducting Toroidal Magnet System for IAXO, the International AXion Observatory
Axions are hypothetical particles that were postulated to solve one of the
puzzles arising in the standard model of particle physics, namely the strong CP
(Charge conjugation and Parity) problem. The new International AXion
Observatory (IAXO) will incorporate the most promising solar axions detector to
date, which is designed to enhance the sensitivity to the axion-photon coupling
by one order of magnitude beyond the limits of the current state-of-the-art
detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a
high-magnetic field distributed over a very large volume to convert solar
axions into X-ray photons. Inspired by the successful realization of the ATLAS
barrel and end-cap toroids, a very large superconducting toroid is currently
designed at CERN to provide the required magnetic field. This toroid will
comprise eight, one meter wide and twenty one meter long, racetrack coils. The
system is sized 5.2 m in diameter and 25 m in length. Its peak magnetic field
is 5.4 T with a stored energy of 500 MJ. The magnetic field optimization
process to arrive at maximum detector yield is described. In addition,
materials selection and their structure and sizing has been determined by force
and stress calculations. Thermal loads are estimated to size the necessary
cryogenic power and the concept of a forced flow supercritical helium based
cryogenic system is given. A quench simulation confirmed the quench protection
scheme.Comment: Accepted for publication in Adv. Cryo. Eng. (CEC/ICMC 2013 special
issue
Conceptual Design of a New Large Superconducting Toroid for IAXO, the New International AXion Observatory
The International AXion Observatory (IAXO) will incorporate a new generation
detector for axions, a hypothetical particle, which was postulated to solve one
of the puzzles arising in the standard model of particle physics, namely the
strong CP problem. The new IAXO experiment is aiming at achieving a sensitivity
to the coupling between axions and photons of one order of magnitude beyond the
limits of the current state-of-the-art detector, represented by the CERN Axion
Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field
distributed over a very large volume to convert solar axions into x-ray
photons. Utilizing the designs of the ATLAS barrel and end-cap toroids, a large
superconducting toroidal magnet is currently being designed at CERN to provide
the required magnetic field. The new toroid will be built up from eight, one
meter wide and 20 m long, racetrack coils. The toroid is sized about 4 m in
diameter and 22 m in length. It is designed to realize a peak magnetic field of
5.4 T with a stored energy of 500 MJ. The magnetic field optimization process
to arrive at maximum detector yield is described. In addition, force and stress
calculations are performed to select materials and determine their structure
and sizing. Conductor dimensionality, quench protection and the cryogenic
design are dealt with as well.Comment: 5 pages, 5 figures. To be published in IEEE Trans. Appl. Supercond.
23 (ASC 2012 conference special issue
The Superconducting Toroid for the New International AXion Observatory (IAXO)
IAXO, the new International AXion Observatory, will feature the most
ambitious detector for solar axions to date. Axions are hypothetical particles
which were postulated to solve one of the puzzles arising in the standard model
of particle physics, namely the strong CP (Charge conjugation and Parity)
problem. This detector aims at achieving a sensitivity to the coupling between
axions and photons of one order of magnitude beyond the limits of the current
detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a
high-magnetic field distributed over a very large volume to convert solar
axions to detectable X-ray photons. Inspired by the ATLAS barrel and end-cap
toroids, a large superconducting toroid is being designed. The toroid comprises
eight, one meter wide and twenty one meters long racetrack coils. The assembled
toroid is sized 5.2 m in diameter and 25 m in length and its mass is about 250
tons. The useful field in the bores is 2.5 T while the peak magnetic field in
the windings is 5.4 T. At the operational current of 12 kA the stored energy is
500 MJ. The racetrack type of coils are wound with a reinforced Aluminum
stabilized NbTi/Cu cable and are conduction cooled. The coils optimization is
shortly described as well as new concepts for cryostat, cold mass, supporting
structure and the sun tracking system. Materials selection and sizing,
conductor, thermal loads, the cryogenics system and the electrical system are
described. Lastly, quench simulations are reported to demonstrate the system's
safe quench protection scheme.Comment: To appear in IEEE Trans. Appl. Supercond. MT 23 issue. arXiv admin
note: substantial text overlap with arXiv:1308.2526, arXiv:1212.463
The influence of the Al stabilizer layer thickness on the normal zone propagation velocity in high current superconductors
The stability of high-current superconductors is challenging in the design of
superconducting magnets. When the stability requirements are fulfilled, the
protection against a quench must still be considered. A main factor in the
design of quench protection systems is the resistance growth rate in the magnet
following a quench. The usual method for determining the resistance growth in
impregnated coils is to calculate the longitudinal velocity with which the
normal zone propagates in the conductor along the coil windings.
Here, we present a 2D numerical model for predicting the normal zone
propagation velocity in Al stabilized Rutherford NbTi cables with large cross
section. By solving two coupled differential equations under adiabatic
conditions, the model takes into account the thermal diffusion and the current
redistribution process following a quench. Both the temperature and magnetic
field dependencies of the superconductor and the metal cladding materials
properties are included. Unlike common normal zone propagation analyses, we
study the influence of the thickness of the cladding on the propagation
velocity for varying operating current and magnetic field.
To assist in the comprehension of the numerical results, we also introduce an
analytical formula for the longitudinal normal zone propagation. The analysis
distinguishes between low-current and high-current regimes of normal zone
propagation, depending on the ratio between the characteristic times of thermal
and magnetic diffusion. We show that above a certain thickness, the cladding
acts as a heat sink with a limited contribution to the acceleration of the
propagation velocity with respect to the cladding geometry. Both numerical and
analytical results show good agreement with experimental data.Comment: To be published in Physics Procedia (ICEC 25 conference special
issue
Gravitational Trapping Near Domain Walls and Stable Solitons
In this work, the behavior of test particles near a domain wall of a stable
false vacuum bubble is studied. It is shown that matter is naturally trapped in
the vicinity of a static domain wall, and also, that there is a discontinuity
in the test particle's velocity when crossing the domain wall. The latter is
unexpected as it stands in contrast to Newtonian theory, where infinite forces
are not allowed. The weak field limit is defined in order to show that there is
no conflict with the non-relativistic behavior of gravitational fields and
particle motions under these conditions.Comment: 8 pages, 1 figure, problem is reanalyzed using a continuous
coordinate syste
The International Axion Observatory (IAXO)
The International Axion Observatory (IAXO) is a new generation axion
helioscope aiming at a sensitivity to the axion-photon coupling of a few
10 GeV, i.e. 1 - 1.5 orders of magnitude beyond the one currently
achieved by CAST. The project relies on improvements in magnetic field volume
together with extensive use of x-ray focusing optics and low background
detectors, innovations already successfully tested in CAST. Additional physics
cases of IAXO could include the detection of electron-coupled axions invoked to
solve the white dwarfs anomaly, relic axions, and a large variety of more
generic axion-like particles (ALPs) and other novel excitations at the
low-energy frontier of elementary particle physics. This contribution is a
summary of our paper [1] to which we refer for further details.Comment: 4 pages, 2 figures. To appear in the proceedings of the 7th Patras
Workshop on Axions, WIMPs and WISPs, Mykonos, Greece, 201
Towards a new generation axion helioscope
We study the feasibility of a new generation axion helioscope, the most
ambitious and promising detector of solar axions to date. We show that large
improvements in magnetic field volume, x-ray focusing optics and detector
backgrounds are possible beyond those achieved in the CERN Axion Solar
Telescope (CAST). For hadronic models, a sensitivity to the axion-photon
coupling of \gagamma\gtrsim {\rm few} \times 10^{-12} GeV is
conceivable, 1--1.5 orders of magnitude beyond the CAST sensitivity. If axions
also couple to electrons, the Sun produces a larger flux for the same value of
the Peccei-Quinn scale, allowing one to probe a broader class of models. Except
for the axion dark matter searches, this experiment will be the most sensitive
axion search ever, reaching or surpassing the stringent bounds from SN1987A and
possibly testing the axion interpretation of anomalous white-dwarf cooling that
predicts of a few meV. Beyond axions, this new instrument will probe
entirely unexplored ranges of parameters for a large variety of axion-like
particles (ALPs) and other novel excitations at the low-energy frontier of
elementary particle physics.Comment: 37 pages, 11 figures, accepted for publication in JCA
New solar axion search in CAST with He filling
The CERN Axion Solar Telescope (CAST) searches for conversion in
the 9 T magnetic field of a refurbished LHC test magnet that can be directed
toward the Sun. Two parallel magnet bores can be filled with helium of
adjustable pressure to match the X-ray refractive mass to the axion
search mass . After the vacuum phase (2003--2004), which is optimal for
eV, we used He in 2005--2007 to cover the mass range of
0.02--0.39 eV and He in 2009--2011 to scan from 0.39--1.17 eV. After
improving the detectors and shielding, we returned to He in 2012 to
investigate a narrow range around 0.2 eV ("candidate setting" of our
earlier search) and 0.39--0.42 eV, the upper axion mass range reachable with
He, to "cross the axion line" for the KSVZ model. We have improved the
limit on the axion-photon coupling to (95% C.L.), depending on the pressure settings. Since 2013, we
have returned to vacuum and aim for a significant increase in sensitivity.Comment: CAST Collaboration 6 pages 3 figure
CAST solar axion search with 3^He buffer gas: Closing the hot dark matter gap
The CERN Axion Solar Telescope (CAST) has finished its search for solar
axions with 3^He buffer gas, covering the search range 0.64 eV < m_a <1.17 eV.
This closes the gap to the cosmological hot dark matter limit and actually
overlaps with it. From the absence of excess X-rays when the magnet was
pointing to the Sun we set a typical upper limit on the axion-photon coupling
of g_ag < 3.3 x 10^{-10} GeV^{-1} at 95% CL, with the exact value depending on
the pressure setting. Future direct solar axion searches will focus on
increasing the sensitivity to smaller values of g_a, for example by the
currently discussed next generation helioscope IAXO.Comment: 5 pages, 2 figures. Last version uploade
- …