1,066 research outputs found

    Precipitation Dynamics for the Formation of Nylon-6 Polyamide Membranes by Isothermal Precipitation in Water/Formic Acid Solutions

    Get PDF
    [[abstract]]The ternary mass transfer equations that describe the isothermal immersion process for polyamide membrane preparation were solved. To account for the moving boundary conditions, coordinate transformations were performed both for the membrane and the bath regions. Mutual diffusion coefficients between solvent and polymer were measured and used to derive ternary phenomenological coefficients for mass transfer equations. The calculated precipitation times, concentration profiles, and diffusion trajectories were found to agree with the measured light transmittance data and the membrane morphologies presented previously.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙

    Modeling the Processes of Fluvial Scouring and Sediment Transport of Dajia River, Taiwan

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchive

    Novel biodegradable sandwich-structured nanofibrous drug-eluting membranes for repair of infected wounds: an in vitro and in vivo study

    Get PDF
    Dave Wei-Chih Chen1,2, Jun-Yi Liao3, Shih-Jung Liu2, Err-Cheng Chan41Department of Orthopedic Surgery, Chang Gung Memorial Hospital, 2Department of Mechanical Engineering, 3Graduate Institute of Medical Mechatronics, 4School of Medical Technology, Chang Gung University, Kwei-San, Tao-Yuan, TaiwanBackground: The purpose of this study was to develop novel sandwich-structured nanofibrous membranes to provide sustained-release delivery of vancomycin, gentamicin, and lidocaine for repair of infected wounds.Methods: To prepare the biodegradable membranes, poly(D, L)-lactide-co-glycolide (PLGA), collagen, and various pharmaceuticals, including vancomycin, gentamicin, and lidocaine, were first dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol. They were electrospun into sandwich-structured membranes with PLGA/collagen as the surface layers and PLGA/drugs as the core. An elution method and a high-pressure liquid chromatography assay were used to characterize in vivo and in vitro drug release from the membranes. In addition, repair of infected wounds in rats was studied. Histological examination of epithelialization and granulation at the wound site was also performed.Results: The biodegradable nanofibrous membranes released large amounts of vancomycin and gentamicin (well above the minimum inhibition concentration) and lidocaine in vivo for more than 3 weeks. A bacterial inhibition test was carried out to determine the relative activity of the antibiotics released. The bioactivity ranged from 40% to 100%. The nanofibrous membranes were functionally active in treating infected wounds, and were very effective as accelerators in early-stage wound healing.Conclusion: Using the electrospinning technique, we will be able to manufacture biodegradable, biomimetic, nanofibrous, extracellular membranes for long-term delivery of various drugs.Keywords: nanofibrous, sandwich-structured, drug-eluting membranes, electrospinning, release characteristics, repair, wound infectio

    The Molecular Determinants of NEDD8 Specific Recognition by Human SENP8

    Get PDF
    Although neuronal-precursor-cell-expressed developmentally downregulated protein-8 (NEDD8) and ubiquitin share the highest level of sequence identity and structural similarity among several known ubiquitin-like proteins, their conjugation to a protein leads to distinct biological consequences. In the study, we first identified the NEDD8 protein of Chlamydomonas reinhardtii (CrNEDD8) and discovered that CrNEDD8 is fused at the C-terminus of a ubiquitin moiety (CrUb) in a head-to-tail arrangement. This CrUb-CrNEDD8 protein was termed CrRUB1 (related to ubiquitin 1) by analogy with a similar protein in Arabidopsis thaliana (AtRUB1). Since there is high sequence identity in comparison to the corresponding human proteins (97% for ubiquitin and 84% for NEDD8), a His-CrRUB1-glutathione S-transferase (GST) fusion construct was adopted as the alternative substrate to characterize the specificity of NEDD8-specific peptidase SENP8 for CrNEDD8. The data showed that SENP8 only cleaved the peptide bond beyond the di-glycine motif of CrNEDD8 and His-RUB1 was subsequently generated, confirming that SENP8 has exquisite specificity for CrNEDD8 but not CrUb. To further determine the basis of this specificity, site-directed mutagenesis at earlier reported putative molecular determinants of NEDD8 specific recognition by SENP8 was performed. We found that a single N51E mutation of CrNEDD8 completely inhibited its hydrolysis by SENP8. Conversely, a single E51N mutation of CrUb enabled this ubiquitin mutant to undergo hydrolysis by SENP8, revealing that a single residue difference at the position 51 contributes substantially to the substrate selectivity of SENP8. Moreover, the E51N/R72A double mutant of the CrUb subdomain can further increase the efficiency of cleavage by SENP8, indicating that the residue at position 72 is also important in substrate recognition. The E51N or R72A mutation of CrUb also inhibited the hydrolysis of CrUb by ubiquitin-specific peptidase USP2. However, USP2 cannot cleave the N51E/A72R double mutant of the CrNEDD8 subdomain, suggesting that USP2 requires additional recognition sites

    Multi-almost periodicity and invariant basins of general neural networks under almost periodic stimuli

    Full text link
    In this paper, we investigate convergence dynamics of 2N2^N almost periodic encoded patterns of general neural networks (GNNs) subjected to external almost periodic stimuli, including almost periodic delays. Invariant regions are established for the existence of 2N2^N almost periodic encoded patterns under two classes of activation functions. By employing the property of M\mathscr{M}-cone and inequality technique, attracting basins are estimated and some criteria are derived for the networks to converge exponentially toward 2N2^N almost periodic encoded patterns. The obtained results are new, they extend and generalize the corresponding results existing in previous literature.Comment: 28 pages, 4 figure

    Crystallographic origin of cycle decay of the high-voltage LiNi\u3csub\u3e0.5\u3c/sub\u3eMn\u3csub\u3e1.5\u3c/sub\u3eO\u3csub\u3e4\u3c/sub\u3e spinel lithium-ion battery electrode

    Get PDF
    High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is considered a potential high-power-density positive electrode for lithium-ion batteries, however, it suffers from capacity decay after extended charge-discharge cycling, severely hindering commercial application. Capacity fade is thought to occur through the significant volume change of the LNMO electrode occurring on cycling, and in this work we use operando neutron powder diffraction to compare the structural evolution of the LNMO electrode in an as-assembled 18650-type battery containing a Li4Ti5O12 negative electrode with that in an identical battery following 1000 cycles at high-current. We reveal that the capacity reduction in the battery post cycling is directly proportional to the reduction in the maximum change of the LNMO lattice parameter during its evolution. This is correlated to a corresponding reduction in the MnO6 octahedral distortion in the spinel structure in the cycled battery. Further, we find that the rate of lattice evolution, which reflects the rate of lithium insertion and removal, is ∼9 and ∼10% slower in the cycled than in the as-assembled battery during the Ni2+/Ni3+ and Ni3+/Ni4+ transitions, respectively

    Mutations in the Salmonella enterica serovar Choleraesuis cAMP-receptor protein gene lead to functional defects in the SPI-1 Type III secretion system

    Get PDF
    Salmonella enterica serovar Choleraesuis (Salmonella Choleraesuis) causes a lethal systemic infection (salmonellosis) in swine. Live attenuated Salmonella Choleraesuis vaccines are effective in preventing the disease, and isolates of Salmonella Choleraesuis with mutations in the cAMP-receptor protein (CRP) gene (Salmonella Choleraesuis ∆crp) are the most widely used, although the basis of the attenuation remains unclear. The objective of this study was to determine if the attenuated phenotype of Salmonella Choleraesuis ∆crp was due to alterations in susceptibility to gastrointestinal factors such as pH and bile salts, ability to colonize or invade the intestine, or cytotoxicity for macrophages. Compared with the parental strain, the survival rate of Salmonella Choleraesuis ∆crp at low pH or in the presence of bile salts was higher, while the ability of the mutant to invade intestinal epithelia was significantly decreased. In examining the role of CRP on the secretory function of the Salmonella pathogenicity island 1 (SPI-1) encoded type III secretion system (T3SS), it was shown that Salmonella Choleraesuis ∆crp was unable to secrete the SPI-1 T3SS effector proteins, SopB and SipB, which play a role in Salmonella intestinal invasiveness and macrophage cytotoxicity, respectively. In addition, caspase-1 dependent cytotoxicity for macrophages was significantly reduced in Salmonella Choleraesuis ∆crp. Collectively, this study demonstrates that the CRP affects the secretory function of SPI-1 T3SS and the resulting ability to invade the host intestinal epithelium, which is a critical element in the pathogenesis of Salmonella Choleraesuis

    Genetic Polymorphism of XRCC1 Arg399Gln Is Associated With Survival in Non–Small-Cell Lung Cancer Patients Treated With Gemcitabine/Platinum

    Get PDF
    IntroductionElevated DNA-repair capacity has been related to chemoresistance of platinum doublet chemotherapy in non–small-cell lung cancer (NSCLC). We evaluated whether single nucleotide polymorphisms of DN- repair genes excision repair cross-complementing group 1 (ERCC1), ERCC2, x-ray repair cross-complementing group 1 (XRCC1), XRCC3, and RRM1 associate with treatment outcome in NSCLC patients receiving gemcitabine plus platinum as their first-line chemotherapy.MethodsGenotyping for eight polymorphisms in five DNA-repair genes was performed with the GenomeLab nucleotide polymorphismstream Genotyping System in 62 advanced NSCLC patients in a training set and 45 patients in a validation set treated with gemcitabine/platinum.ResultsIn the training set, the wild-type genotype of XRCC1 Arg399Gln (G/G) was associated with decreased median overall survival (OS) (22 months, 95% confidence interval [CI], 10–34 months versus not reached, log-rank test, p = 0.005) than those carrying variant genotypes (G/A+A/A). In addition, there was a statistically significant longer median OS in patients carrying wild-type ERCC2 Asp312Asn genotype (G/G) (51 months, 95% CI, 19–82 months versus 10 months, log-rank test, p < 0.001) than those carrying heterozygous variant genotypes (G/A). In the multivariate Cox model, we found a significant effect of XRCC1 Arg399Gln (G/A+A/A versus G/G, hazard ratio [HR] 0.290; 95%CI, 0.12–0.705, p = 0.006) and ERCC2 Asp312Asn (G/A versus G/G, HR 14.04; 95% CI, 2.253–87.513, p = 0.005) polymorphisms on patients’ OS. In the validation set, only XRCC1 399ConclusionsGenetic polymorphism of XRCC1 Arg399Gln may be a candidate for contributing interindividual difference in the OS of gemcitabine/platinum-treated advanced NSCLC patients
    corecore