11,046 research outputs found

    A two-dimensional numerical study of the flow inside the combustion chambers of a motored rotary engine

    Get PDF
    A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust

    The Mid-Infrared Extinction Law in the Ophiuchus, Perseus, and Serpens Molecular Clouds

    Get PDF
    We compute the mid-infrared extinction law from 3.6-24 microns in three molecular clouds: Ophiuchus, Perseus, and Serpens, by combining data from the "Cores to Disks" Spitzer Legacy Science program with deep JHKs imaging. Using a new technique, we are able to calculate the line-of-sight extinction law towards each background star in our fields. With these line-of-sight measurements, we create, for the first time, maps of the chi-squared deviation of the data from two extinction law models. Because our chi-squared maps have the same spatial resolution as our extinction maps, we can directly observe the changing extinction law as a function of the total column density. In the Spitzer IRAC bands, 3.6-8 microns, we see evidence for grain growth. Below AKs=0.5A_{K_s} = 0.5, our extinction law is well-fit by the Weingartner & Draine (2001) RV=3.1R_V = 3.1 diffuse interstellar medium dust model. As the extinction increases, our law gradually flattens, and for AKs>=1A_{K_s} >= 1, the data are more consistent with the Weingartner & Draine RV=5.5R_V = 5.5 model that uses larger maximum dust grain sizes. At 24 microns, our extinction law is 2-4 times higher than the values predicted by theoretical dust models, but is more consistent with the observational results of Flaherty et al. (2007). Lastly, from our chi-squared maps we identify a region in Perseus where the IRAC extinction law is anomalously high considering its column density. A steeper near-infrared extinction law than the one we have assumed may partially explain the IRAC extinction law in this region.Comment: 38 pages, 19 figures in pre-print format. Accepted for publication in ApJ. A version with full-resolution figures can be found here: http://peggysue.as.utexas.edu/SIRTF

    Knowledge Nomads: Understanding an Overlooked Segment of the Workforce Helps Managers Lead

    Get PDF
    Managers have formal and official supervisory authority within an organizational hierarchy. As a result, a perennial concern of managers is employee mobility, i.e., the turnover of workers, and the implication of worker mobility for the staffing of critical functions in the organization

    GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 2: User's manual and program listing

    Get PDF
    An efficient computer program, called GRID2D/3D, was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no modifications are needed in the grid generation part of the program. The theory and method used in GRID2D/3D is described

    GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 1: Theory and method

    Get PDF
    An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no modifications are needed in the grid generation part of the program. This technical memorandum describes the theory and method used in GRID2D/3D

    Temporal and Spatial Dependence of Quantum Entanglement from a Field Theory Perspective

    Full text link
    We consider the entanglement dynamics between two Unruh-DeWitt detectors at rest separated at a distance dd. This simple model when analyzed properly in quantum field theory shows many interesting facets and helps to dispel some misunderstandings of entanglement dynamics. We find that there is spatial dependence of quantum entanglement in the stable regime due to the phase difference of vacuum fluctuations the two detectors experience, together with the interference of the mutual influences from the backreaction of one detector on the other. When two initially entangled detectors are still outside each other's light cone, the entanglement oscillates in time with an amplitude dependent on spatial separation dd. When the two detectors begin to have causal contact, an interference pattern of the relative degree of entanglement (compared to those at spatial infinity) develops a parametric dependence on dd. The detectors separated at those dd with a stronger relative degree of entanglement enjoy longer disentanglement times. In the cases with weak coupling and large separation, the detectors always disentangle at late times. For sufficiently small dd, the two detectors can have residual entanglement even if they initially were in a separable state, while for dd a little larger, there could be transient entanglement created by mutual influences. However, we see no evidence of entanglement creation outside the light cone for initially separable states.Comment: 21 pages, 8 figures. Minor changes. Some plots are re-expressed in logarithmic negativity. No change in the overall result

    Quantum interference by two temporally distinguishable pulses

    Full text link
    We report a two-photon interference effect, in which the entangled photon pairs are generated from two laser pulses well-separated in time. In a single pump pulse case, interference effects did not occur in our experimental scheme. However, by introducing a second pump pulse delayed in time, quantum interference was then observed. The visibility of the interference fringes shows dependence on the delay time between two laser pulses. The results are explained in terms of indistinguishability of biphoton amplitudes which originated from two temporally separated laser pulses.Comment: two-column, 4pages, submitted to PRA, minor change

    Comparative genomics approaches accurately predict deleterious variants in plants

    Get PDF
    Recent advances in genome resequencing have led to increased interest in prediction of the functional consequences of genetic variants. Variants at phylogenetically conserved sites are of particular interest, because they are more likely than variants at phylogenetically variable sites to have deleterious effects on fitness and contribute to phenotypic variation. Numerous comparative genomic approaches have been developed to predict deleterious variants, but the approaches are nearly always assessed based on their ability to identify known disease-causing mutations in humans. Determining the accuracy of deleterious variant predictions in nonhuman species is important to understanding evolution, domestication, and potentially to improving crop quality and yield. To examine our ability to predict deleterious variants in plants we generated a curated database of 2,910 Arabidopsis thaliana mutants with known phenotypes. We evaluated seven approaches and found that while all performed well, their relative ranking differed from prior benchmarks in humans. We conclude that deleterious mutations can be reliably predicted in A. thaliana and likely other plant species, but that the relative performance of various approaches does not necessarily translate from one species to another

    Diffusion due to the Beam-Beam Interaction and Fluctuating Fields in Hadron Colliders

    Full text link
    Random fluctuations in the tune, beam offsets and beam size in the presence of the beam-beam interaction are shown to lead to significant particle diffusion and emittance growth in hadron colliders. We find that far from resonances high frequency noise causes the most diffusion while near resonances low frequency noise is responsible for the large emittance growth observed. Comparison of different fluctuations shows that offset fluctuations between the beams causes the largest diffusion for particles in the beam core.Comment: 5 pages, 3 postscript figure

    Critical Currents of Josephson-Coupled Wire Arrays

    Full text link
    We calculate the current-voltage characteristics and critical current I_c^{array} of an array of Josephson-coupled superconducting wires. The array has two layers, each consisting of a set of parallel wires, arranged at right angles, such that an overdamped resistively-shunted junction forms wherever two wires cross. A uniform magnetic field equal to f flux quanta per plaquette is applied perpendicular to the layers. If f = p/q, where p and q are mutually prime integers, I_c^{array}(f) is found to have sharp peaks when q is a small integer. To an excellent approximation, it is found in a square array of n^2 plaquettes, that I_c^{array}(f) \propto (n/q)^{1/2} for sufficiently large n. This result is interpreted in terms of the commensurability between the array and the assumed q \times q unit cell of the ground state vortex lattice.Comment: 4 pages, 4 figure
    • …
    corecore