440 research outputs found

    Exploration of Building Information Modeling and Integrated Project Cloud Service in early architectural design stages

    Full text link
    [EN] In the evolving Architecture, Engineering, and Construction (AEC) industry, the use of Building Information Modeling (BIM) and Integrated Project Cloud Service (IPCS) has become crucial. These tools are particularly essential during the early design stages, as they enable comprehensive management and integration of project information, thus promoting effective decision-making throughout project lifecycles. This combined approach enhances inter-organizational collaborations, improves design and construction practices, and creates a communal data platform for stakeholders. This research explores the effectiveness of the BIM-IPCS system in streamlining data exchange and information flow during early design, suggesting ways to minimize errors, speed up processes, and reduce construction costs through dependable networks. Conclusively, this study underscores the significant impact of the BIM-IPCS system on project management, ensuring well-coordinated and informed construction while advocating for its role in driving innovative and efficient project delivery in the AEC industry.Grateful acknowledgment is extended to the National Taiwan University of Science and Technology, the Public Works Information Institute of the Republic of China (CPWEIA), and Luxor Digital Co., Ltd. (LUXOR) for their substantial support and contributions to this research.Wagiri, F.; Shih, S.; Harsono, K.; Cheng, T.; Lu, M. (2023). Exploration of Building Information Modeling and Integrated Project Cloud Service in early architectural design stages. VITRUVIO - International Journal of Architectural Technology and Sustainability. 8(2):26-37. https://doi.org/10.4995/vitruvio-ijats.2023.2045326378

    Influence of electrode thermal conductivity on resistive switching behavior during reset process

    Get PDF
    Resistive random access memory (RRAM) is the most promising candidate for non-volatile memory (NVM) due to its extremely low operation voltage, extremely fast write/erase speed, and excellent scaling capability. However, an obstacle hindering mass production of RRAM is the non-uniform physical mechanism in its resistance switching process. This study examines the influence of different electrode thermal conductivity on switching behavior during the reset process. Electrical analysis methods and an analysis of current conduction mechanism indicate that better thermal conductivity in the electrode will require larger input power in order to induce more active oxygen ions to take part in the reset process. More active oxygen ions cause a more complete reaction during the reset process, and cause the effective switching gap (dsw) to become thicker. The effect of the electrode thermal conductivity and input power are explained by our model and clarified by electrical analysis methods. Please click Additional Files below to see the full abstract

    Accordion Stent Deformation upon Retrieval of a Side-Branch Protective Guidewire

    Get PDF
    In this case we herein report a dangerous complication from primary percutaneous coronary intervention, where an unnoticed loop of the guidewire was inadvertently made around the stent during provisional stenting. Since the guidewire and the stent were entangled, efforts to retrieve the guidewire only exacerbated the problem by compressing the stent like an accordion. We review those factors that may have influenced stent compression in our case, as well as possible ways to avoid it from occurring in the future

    Increased spinal prodynorphin gene expression in reinflammation-associated hyperalgesia after neonatal inflammatory insult

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroplasticity induced by neonatal inflammation is the consequence of a combination of activity-dependent changes in neurons. We investigated neuronal sensitivity to a noxious stimulus in a rat model of neonatal hind-paw peripheral inflammation and assessed changes in pain behaviour at the physiological and molecular levels after peripheral reinflammation in adulthood.</p> <p>Results</p> <p>A decrease in paw withdrawal latency (PWL) after a heat stimulus was documented in rats that received inflammatory injections in their left hind paws on postnatal day one (P1) and a reinflammation stimulus at postnatal 6-8 weeks of age, compared with normal rats. An increase in the expression of the prodynorphin (<it>proDYN</it>) gene was noted after reinflammation in the spinal cord ipsilateral to the afferents of the neonatally treated hind paw. The involvement of the activation of extracellular signal-regulated kinases (ERK) in peripheral inflammatory pain hypersensitivity was evidenced evident by the increase in phospho-ERK (pERK) activity after reinflammation.</p> <p>Conclusions</p> <p>Our results indicate that peripheral inflammation in neonates can permanently alter the pain processing pathway during the subsequent sensory stimulation of the region. Elucidation of the mechanism underlying the developing pain circuitry will provide new insights into the understanding of the early pain behaviours and the subsequent adaptation to pain.</p

    Exploration of Building Information Modeling and Integrated Project Cloud Service in early architectural design stages

    Get PDF
    In the evolving Architecture, Engineering, and Construction (AEC) industry, the use of Building Information Modeling (BIM) and Integrated Project Cloud Service (IPCS) has become crucial. These tools are particularly essential during the early design stages, as they enable comprehensive management and integration of project information, thus promoting effective decision-making throughout project lifecycles. This combined approach enhances inter-organizational collaborations, improves design and construction practices, and creates a communal data platform for stakeholders. This research explores the effectiveness of the BIM-IPCS system in streamlining data exchange and information flow during early design, suggesting ways to minimize errors, speed up processes, and reduce construction costs through dependable networks. Conclusively, this study underscores the significant impact of the BIM-IPCS system on project management, ensuring well-coordinated and informed construction while advocating for its role in driving innovative and efficient project delivery in the AEC industry

    Estrogen Augments Shear Stress–Induced Signaling and Gene Expression in Osteoblast-like Cells via Estrogen Receptor–Mediated Expression of β1-Integrin

    Get PDF
    Estrogen and mechanical forces are positive regulators for osteoblast proliferation and bone formation. We investigated the synergistic effect of estrogen and flow-induced shear stress on signal transduction and gene expression in human osetoblast-like MG63 cells and primary osteoblasts (HOBs) using activations of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) and expressions of c-fos and cyclooxygenase-2 (I) as readouts. Estrogen (17β-estradiol, 10 nM) and shear stress (12 dyn/cm2) alone induced transient phosphorylations of ERK and p38 MAPK in MG63 cells. Pretreating MG63 cells with 17β-estradiol for 6 hours before shearing augmented these shear-induced MAPK phosphorylations. Western blot and flow cytometric analyses showed that treating MG63 cells with 17β-estradiol for 6 hrs induced their β1-integrin expression. This estrogen-induction of β1-integrin was inhibited by pretreating the cells with a specific antagonist of estrogen receptor ICI 182,780. Both 17β-estradiol and shear stress alone induced c-fos and Cox-2 gene expressions in MG63 cells. Pretreating MG63 cells with 17β-estradiol for 6 hrs augmented the shear-induced c-fos and Cox-2 expressions. The augmented effects of 17β-estradiol on shear-induced MAPK phosphorylations and c-fos and Cox-2 expressions were inhibited by pretreating the cells with ICI 182,780 or transfecting the cells with β1-specific small interfering RNA. Similar results on the augmented effect of estrogen on shear-induced signaling and gene expression were obtained with HOBs. Our findings provide insights into the mechanism by which estrogen augments shear stress responsiveness of signal transduction and gene expression in bone cells via estrogen receptor–mediated increases in β1-integrin expression. © 2010 American Society for Bone and Mineral Research

    Acute effect of electroacupuncture at the Zusanli acupoints on decreasing insulin resistance as shown by lowering plasma free fatty acid levels in steroid-background male rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin sensitivity has been enhanced by electroacupuncture (EA) in rats, but the EA phenomenon in an insulin resistant state is still unclear. This study reports the use of a large dose of prednisolone to evaluate the effects of EA in a state of insulin resistance.</p> <p>Methods</p> <p>The plasma levels of free fatty acids (FFAs) were estimated in steroid-background rats (SBRs) and compared with those in healthy rats treated with normal saline. In addition, plasma glucose and endogenous insulin levels were assayed to calculate the homeostasis model assessment (HOMA) index. Intravenous glucose tolerance test (IVGTT) was carried out to compare glucose tolerance. The SBRs were randomly divided into EA-treatment and non-EA treatment groups and 15-Hz EA was applied to the bilateral Zusanli acupoints to investigate its effects on insulin resistance. In addition to an insulin challenge test (ICT) and IVGTT, the plasma levels of FFAs were measured and western blot was performed to help determine the effects of EA on the insulin resistant state.</p> <p>Results</p> <p>The plasma levels of FFAs increased markedly in SBRs, the HOMA index was markedly higher, and glucose tolerance was impaired. EA improved glucose tolerance and insulin sensitivity by decreasing the plasma levels of FFAs. Further, the insulin signaling proteins (IRS1) and glucose transporter isoform protein (GLUT4) in skeletal muscle inhibited by prednisolone recovered after EA.</p> <p>Conclusion</p> <p>Insulin resistance was successfully induced by a large dose of prednisolone in male rats. This insulin resistance can be improved by 15 Hz EA at the bilateral Zusanli acupoints, as shown by decreased plasma levels of FFAs.</p
    corecore