502 research outputs found

    Retraction: Estimation of progression of multi-state chronic disease using the Markov model and prevalence pool concept

    Get PDF
    This article [1] has been retracted because the Editors are unable to ensure the scientific veracity of the findings or the ethical conduct of the authors despite an extensive investigation

    Refrigerant- Lubricant Mixture Properties Influencing Bubble Dynamic Parameters and Heat Transfer Coefficient in Nucleate Pool Boiling

    Get PDF
    We have been successfully developed a model regarding lubricant effect on individual processes of bubble nucleation, growth and departure period for nucleate pool boiling heat transfer. In this study, three type POE refrigeration lubricants with different refrigerant miscibility (POEA/POEB/POEC), two viscosity grades (ISO68 & 170), three kind of refrigerants (R-134a/R-1234ze/R-134yf), and three different saturated temperatures (10℃/0℃/10℃) are taken into calculation under different heat flux ranging from 10 KW/m2 to 80 KW/m2. Based on this model, a knowledge of chemical structures and physical properties of lubricant and refrigerant is sufficient to get bubble dynamic parameters and predict the boiling performance near metal surface. According to calculating results, several key factors play an important role in pool boiling heat transfer and show drastic influence on bubble parameters and HTC, such as refrigerant type, saturated temperature, heat flux and lubricant concentration. Regarding lubricant chemical structure effect on heat transfer performance, it will be direct related to OCR and following influence on HTC in real evaporator environment. But if keeping same lubricant concentration, different results will appear. Various lubricant structures may provide different volume size, adsorption energy on metal surface and interaction force between refrigerant and lubricant, but these factors sometimes offset each other and lead to only a slight difference in bubble size, contact angle, surface coverage concentration, and HTC. The calculation indicates that the presence of lubricant imposes a negative effect on HTC during waiting period of bubble formation and departure period, but a positive effect on HTC may prevail in bubble growth period. Such two effects compete during the boiling process and could lead increase or impair heat transfer performance at a low lubricant concentration

    Investigaciones sobre educación estocástica en primaria en el Acta Latinoamericana de Matemática Educativa (1998-2018)

    Get PDF
    En este trabajo se presentan los resultados preliminares de un estudio bibliométrico, de nivel descriptivo, en que se analizaron los artículos publicados en el Acta Latinoamericana de Matemática Educativa sobre estadística y/o probabilidad en Educación Primaria, entre los años 1998 y 2018. Para esto, se identifican aquellos trabajos sobre Educación Estocástica de nivel primario, considerando las siguientes unidades de análisis: tema tratado, producción por año, autores (cantidad, sexo, institución y país de procedencia), palabras clave y citas Google Académico. El estudio permite observar la escasa cantidad de trabajos en relación con esta temática y su discontinuidad durante ese periodo. resultados

    The Effect of Refrigeration Lubricant Properties on Nucleate Pool Boiling Heat Transfer Performance

    Get PDF
    Refrigeration lubricant plays a key role in lubricating and sealing during vapor compression processes. However, it may migrate to the evaporator to influence the heat transfer characteristics, either enhancement or degradation. The aim of this study is to fundamentally understand the effect of lubricant properties and bubble parameters on heat transfer performance. To clarify parameters affecting the heat transfer coefficient, several experiments were conducted on a horizontal flat surface, and pool-boiling phenomenon was recording by high-speed camera. Comparisons of heat transfer measurements for different refrigerant/lubricant mixtures were made, including two different refrigerants (R-134a & R-1234ze) and eight POE lubricants with different miscibility, ISO68 to ISO170 viscosity range. This study shows that improvements over pure refrigerant heat transfer can be obtained for refrigerant /lubricant mixtures with small lubricant mass fraction, high lubricant viscosity, and a low critical solution temperature (CST). The presence of lubricant will decrease the departure bubble diameter and may deteriorate heat transfer performance when the lubricant mass fraction is higher than 3%. A mechanistic explanation was provided for the observed refrigerant/lubricant boiling phenomenon, and we were successfully in creating a new model to quantify the effect of lubricant properties on the heat transfer performance. This model was developed based on cavity boiling theory, interfacial energy calculation between metal-liquid surface, and liquid-bubble interface. According to the model, the presence of lubricant layer on metal surface and surrounding the bubble will significantly alter waiting time of boiling, bubble departure time, activity site density of boiling incipience and superheat on heating surface

    The 3D-tomography of the nano-clusters formed by Fe-coating and annealing of diamond films for enhancing their surface electron field emitters

    Get PDF
    [[abstract]]The Fe-coating and H2-annealed processes markedly increased the conductivity and enhanced the surface electron field emission (s-EFE) properties for the diamondfilms. The enhancement on the s-EFE properties for the diamondfilms is presumably owing to the formation of nano-graphite clusters on the surface of the films via the Fe-to-diamond interaction. However, the extent of enhancement varied with the granular structure of the diamondfilms. For the microcrystalline (MCD)films, the s-EFE process can be turned on at (E0)MCD = 1.9 V/μm, achieving a large s-EFE current density of (Je)MCD = 315 μA/cm2 at an applied field of 8.8 V/μm. These s-EFE properties are markedly better than those for Fe-coated/annealed ultrananocrystalline diamond(UNCD)films with (E0)UNCD = 2.0 V/μm and (Je)UNCD = 120 μA/cm2. The transmission electron microscopy showed that the nano-graphite clusters formed an interconnected network for MCDfilms that facilitated the electron transport more markedly, as compared with the isolated nano-graphitic clusters formed at the surface of the UNCDfilms. Therefore, the Fe-coating/annealing processes improved the s-EFE properties for the MCDfilms more markedly than that for the UNCDfilms. The understanding on the distribution of the nano-clusters is of critical importance in elucidating the authentic factor that influences the s-EFE properties of the diamondfilms. Such an understanding is possible only through the 3D-tomographic investigations.[[journaltype]]國外[[ispeerreviewed]]Y[[booktype]]電子版[[countrycodes]]US

    A model-based circular binary segmentation algorithm for the analysis of array CGH data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Circular Binary Segmentation (CBS) is a permutation-based algorithm for array Comparative Genomic Hybridization (aCGH) data analysis. CBS accurately segments data by detecting change-points using a maximal-<it>t </it>test; but extensive computational burden is involved for evaluating the significance of change-points using permutations. A recent implementation utilizing a hybrid method and early stopping rules (hybrid CBS) to improve the performance in speed was subsequently proposed. However, a time analysis revealed that a major portion of computation time of the hybrid CBS was still spent on permutation. In addition, what the hybrid method provides is an approximation of the significance upper bound or lower bound, not an approximation of the significance of change-points itself.</p> <p>Results</p> <p>We developed a novel model-based algorithm, extreme-value based CBS (eCBS), which limits permutations and provides robust results without loss of accuracy. Thousands of aCGH data under null hypothesis were simulated in advance based on a variety of non-normal assumptions, and the corresponding maximal-<it>t </it>distribution was modeled by the Generalized Extreme Value (GEV) distribution. The modeling results, which associate characteristics of aCGH data to the GEV parameters, constitute lookup tables (eXtreme model). Using the eXtreme model, the significance of change-points could be evaluated in a constant time complexity through a table lookup process.</p> <p>Conclusions</p> <p>A novel algorithm, eCBS, was developed in this study. The current implementation of eCBS consistently outperforms the hybrid CBS 4× to 20× in computation time without loss of accuracy. Source codes, supplementary materials, supplementary figures, and supplementary tables can be found at <url>http://ntumaps.cgm.ntu.edu.tw/eCBSsupplementary</url>.</p
    corecore