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ABSTRACT 

We have been successfully developed a model regarding lubricant effect on individual processes of bubble 

nucleation, growth and departure period for nucleate pool boiling heat transfer. In this study, three type POE 

refrigeration lubricants with different refrigerant miscibility (POEA/POEB/POEC), two viscosity grades (ISO68 

& 170), three kind of refrigerants (R-134a/R-1234ze/R-134yf), and three different saturated temperatures (-

10℃/0℃/10℃) are taken into calculation under different heat flux ranging from 10 KW/m2 to 80 KW/m2. Based 

on this model, a knowledge of chemical structures and physical properties of lubricant and refrigerant is sufficient 

to get bubble dynamic parameters and predict the boiling performance near metal surface. According to 
calculating results, several key factors play an important role in pool boiling heat transfer and show drastic 

influence on bubble parameters and HTC, such as refrigerant type, saturated temperature, heat flux and lubricant 

concentration. Regarding lubricant chemical structure effect on heat transfer performance, it will be direct related 

to OCR and following influence on HTC in real evaporator environment. But if keeping same lubricant 

concentration, different results will appear. Various lubricant structures may provide different volume size, 

adsorption energy on metal surface and interaction force between refrigerant and lubricant, but these factors 

sometimes offset each other and lead to only a slight difference in bubble size, contact angle, surface coverage 

concentration, and HTC. The calculation indicates that the presence of lubricant imposes a negative effect on HTC 

during waiting period of bubble formation and departure period, but a positive effect on HTC may prevail in 

bubble growth period. Such two effects compete during the boiling process and could lead increase or impair heat 

transfer performance at a low lubricant concentration. 

Keywords: heat transfer coefficient; lubricant; refrigeration; pool boiling model, bubble parameter 

1. INTRODUCTION 

Several type lubricants were used in refrigeration system, such as mineral oils (MO), alkylbenzene (AB), 

polyalkylene glycol (PAG), polyvinyl ether (PVE), and polyolester (POE). Since HCFC refrigerants are phased 
out based on ODP consideration, MO and AB oils almost could not be applied in HFC/HFO refrigeration system 

by their immiscible characteristics with refrigerants. In recent years, PAG, PVE and POE can be well structure-

designed to provide suitable miscibility with HFC/HFO refrigerants under low and high temperature, and meet 

various refrigeration compressor requirements, such as solubility, working viscosity, lubrication, electrical 

insulation property, thermal and chemical stability (Rudnick, 2013). Regarding the influences of lubricant oils on 

the heat transfer characteristics of refrigerant, Shen and Groll (2005) intended to present a comprehensive 

summary of the various studies and tries to identify some general relationships regarding the influence of 

lubricants on the heat transfer and pressure drop of refrigerants. Wang et al. (2014) had summarized experimental 

data regarding to the influence of lubricant on the nucleate boiling heat transfer subject since 1980 from a total of 

34 literatures. From their summary, it appears that the test results about lubricant on HTC are quite inconsistent. 

Depending on the lubricant, refrigerant, concentration, tube geometry, saturation temperature and supplied heat 

flux, the HTC can be augmented or impaired and it lacked some conclusive trend upon the lubricant addition. 
Zheng et al. (2001) provided ammonia/PAG (ISO 68) experiment data under smooth tube for oil concentration 

range from 0~10%. The experimental results showed that under a particular saturation temperature and heat flux, 

the heat transfer coefficient generally first decreased with an increase in oil concentration up to 5% and then 

followed by an insignificant increase in the coefficient with a further increase in oil concentration to 10%. Ji et al. 
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(2010) unveiled augmentations for R134a/PVE (ISO 68) lubricant mixtures on plain, integral fin and four 

enhanced tubes. Their test results also reveal a more pronounced drop with lubricant concentration especially for 

enhanced tube geometries. Mohrlok et al. (2001) conducted R-507/POE (ISO 32) mixture for nucleate boiling on 

smooth tubes with lubricant mass fractions up to 10% and observed that the HTC increases with the rise of 
lubricant mass fractions up to 3% at some lower saturation temperatures. Kedzierski (2001) concluded that 

lubricant with higher viscosity and poor miscibility will result in higher HTC in R134a/POE system. Spindler & 

Hahne (2009) measured ISO55/170 POE in R-134a, and the results show that the heat transfer coefficient (HTC) 

for 3% refrigerant-lubricant mixture is higher than the rest concentrations. 

The objective of this study is to examine the parametric influences of lubricant on the nucleate boiling 

performance based the developed model by Hung et al. (2020). In addition, based on the developed model, the 

influences upon bubble parameters (bubble diameter, time, rate), and heat flux on HTC are investigated in details. 

2. COMPARISON OF KEY FACTORS EFFECTING ON MIXTURE PROPERTIES 

FOR BOILING MECHANISM 

The model of lubricant effect on individual processes of bubble nucleation, growth and departure described 

in detail by Hung et al. (2020). For illustrating the key factors effect on boiling, three type POE refrigeration 
lubricants with different refrigerant miscibility (POEA/POEB/POEC), two viscosity grades (ISO68 & 170), 

three kind of refrigerants (R-134a/R-1234ze/R-134yf), and three different saturated temperatures (-10℃/0℃/10 

℃) are taken into calculation under different heat flux ranging from 10 KW/m2 to 80 KW/m2. These basic 

properties of pure refrigerants are based REFPROP, and pure lubricants are shown in Table 1. The mixture 

properties are based on these data for further investigation. 

Table 1 Basic physical data for the tested lubricants at different temperatures 

Lubricant 

Sat. temp 

(℃) 

ρl 

(kg/m3) 

Cp 

(J/Kg-K) 

k 

(W/mk) 

η 

(cP) 

α 

(m2/s) 

σ 

(N/m) 

POEA 68 

10 961.9 1803 0.1368 487  7.888E-08 0.0320 

0 968.9 1777 0.139 1213  8.074E-08 0.0326 

-10 975.8 1751 0.1417 3574  8.293E-08 0.0333 

POEA 170 

10 967.4 1794 0.1366 1607  7.871E-08 0.0316 

0 974.2 1767 0.1391 4683  8.081E-08 0.0322 

-10 979.9 1741 0.1422 16465  8.335E-08 0.0328 

POEB 68 

10 1026.2 1959 0.1501 355  7.467E-08 0.0379 

0 1033.6 1937 0.1523 750  7.607E-08 0.0387 

-10 1041.0 1916 0.155 1797  7.771E-08 0.0395 

POEB 170 

10 993.0 1853 0.1413 1316  7.68E-08 0.0339 

0 1000.1 1828 0.1436 3278  7.853E-08 0.0346 

-10 1007.4 1804 0.1465 9528  8.061E-08 0.0352 

POEC 170 

10 975.3 1865 0.1383 1409  7.603E-08 0.0335 

0 982.2 1839 0.1407 3715  7.79E-08 0.0341 

-10 988.9 1814 0.1437 11319  8.011E-08 0.0348 

 

2.1 Surface coverage concentration 

Based on the proposed model (Hung et al., 2020), the first important factor for consideration regarding the 

lubricant effect on heat transfer is surface coverage concentration. Surface coverage concentration is the actual 

lubricant concentration near the surface and it will influence the bubble point during waiting period, mixture 

properties near surface, and the parameters affecting the bubble dynamics inside oil-rich film. The calculation 

results are shown in Fig.1(a), Fig.1(b) and Table 2. From proposed model, it indicates that either raising χs (the 

adsorption energy difference between refrigerant-surface and lubricant-surface), χ12 (Flory-Huggins polymer-

solvent interaction parameter) or r factor (real volumetric size ratio of lubricant relative to refrigerant in mixtures) 

all results in the rise of surface coverage concentration nearby the heating surface. Compare with Table 2, Fig. 

1(a) shows the χs , χ12 and r factor in R-134a/POEA 170 mixture is larger than those in R-1234ze/POEA 170 
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mixture, yet the augmentations in surface coverage concentrations in R-134a/POEA 170 mixtures are more 

pronounced than that in R-1234ze/POEA 170 mixtures irrespective of bulk lubricant concentrations. On the other 

hand, the phenomenon between R-134a and R-1234yf mixtures are different from previous case. For lower oil 

concentrations, the surface coverage concentrations of R-134a/POEA 170 mixtures are larger than that of R-
1234yf/POEA 170 mixtures due to slightly larger values of χs and χ12. However, with the rise of oil concentration, 

surface coverage of R-1234yf/POEA 170 mixtures is marginally higher than R-134a/POEA 170 mixture due to 

larger r factor of R-1234yf mixture. Regarding the lubricant effect (Fig.1(b)). Despite POEB 170 is more miscible 

than POEA 170 in R-134a (that leads to smaller values of χs and χ12), the volumetric size of POEB 170 in R-134a 

is larger than that of POEA 170 (that means a large r factor). In summary, these three factors (χs, r, and χ12) 

compensate with each other and yield identical surface coverage concentration accordingly. On the other hand, 

POEC 170 contains the highest coverage concentration in R-134a due to its immiscible property. For the same 

type POE lubricants with the same refrigerant, the χs and χ12 between POEA 68 and POEA 170 are almost the 

same, but the low viscosity POEA 68 contains a small r value, thereby resulting in a lower surface coverage 

concentration. 

Table 2 – Interaction factors between refrigerant-lubricant, refrigerant-metal, and lubricant-metal 

Refrigerant Lubricant 

Saturated temperature = 10℃ Saturated temperature = 0℃ Saturated temperature = -10℃ 

χs χ12 r 

Energy 

Gap, 

MPa1/2 

χs χ12 r 

Energy 

Gap, 

MPa1/2 

χs χ12 r 

Energy 

Gap, 

MPa1/2 

R-134a 

POEA 68 0.3982  0.4926  35.0273  -0.6173  0.4000  0.4952  35.5147  -0.4073  0.4018  0.4979  35.9464  -0.1966  

POEA 170 0.3978  0.4972  50.8539  -0.2499  0.3996  0.5000  51.5653  -0.0331  0.4016  0.5028  52.2455  0.1916  

POEB 68 0.3984  0.4727  41.0697  -2.1845  0.3996  0.4746  41.6965  -2.0304  0.4009  0.4767  42.2503  -1.8689  

POEB 170 0.3966  0.4838  56.1536  -1.3033  0.3981  0.4862  56.9712  -1.1204  0.3998  0.4886  57.6822  -0.9286  

POEC 170 0.3984  0.5071  61.2098  0.5270  0.4001  0.5096  62.0981  0.7269  0.4019  0.5123  62.8915  0.9356  

R-1234ze 

POEA 68 0.3602  0.4553  30.4260  -3.5502  0.3604  0.4560  30.8990  -3.4933  0.3607  0.4569  31.3286  -3.4277  

POEA 170 0.3591  0.4592  44.2149  -3.2444  0.3594  0.4600  44.9019  -3.1797  0.3599  0.4611  45.5652  -3.0966  

POEB 68 0.3617  0.4371  35.6621  -4.9867  0.3610  0.4368  36.3022  -5.0116  0.3606  0.4366  36.8849  -5.0204  

POEB 170 0.3584  0.4427  49.2822  -4.5452  0.3582  0.4412  50.2946  -4.6601  0.3581  0.4399  51.2405  -4.7666  

POEC 170 0.3598  0.4692  53.1175  -2.4565  0.3599  0.4697  53.9803  -2.4166  0.3601  0.4705  54.7658  -2.3576  

R-1234yf 

POEA 68 0.3968  0.4920  24.7029  -0.6649  0.3974  0.4932  25.1547  -0.5684  0.3980  0.4945  25.5595  -0.4660  

POEA 170 0.3960  0.4962  35.8950  -0.3311  0.3966  0.4975  36.5555  -0.2303  0.3974  0.4989  37.1818  -0.1153  

POEB 68 0.4010  0.4770  28.6641  -1.8407  0.4010  0.4776  29.2269  -1.7947  0.4013  0.4784  29.7293  -1.7351  

POEB 170 0.3974  0.4852  39.4417  -1.1950  0.3977  0.4863  40.1784  -1.1136  0.3982  0.4873  40.8393  -1.0290  

POEC 170 0.3976  0.5073  43.0964  0.5445  0.3981  0.5084  43.9053  0.6324  0.3988  0.5097  44.6329  0.7354  

 

Fig. 1(a). Effect of bulk concentration on the surface coverage 

concentration for POEA 170 mixture subject to various 

refrigerants under 30 kW/m2 and 0 C. 

Fig. 1(b). Effect of bulk concentration on the surface 

coverage concentration for R-134a mixture subject to 

various lubricants subject to q = 30 kW/m2 at Tsat = 0C 
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2.2 Boiling point elevation 

Fig. 2(a) shows similar trend for the boiling point elevation against oil concentration, comparing surface 

coverage concentration shown in Fig.1(a). In addition, there also appears several differences regarding lubricant 

effect as shown in Fig. 1(a) and Fig. 2(b) on the surface coverage concentration and boiling point elevation. In 

summary, these parameters which can promote surface coverage concentration usually can incur higher boiling 

point elevation and lead to higher wall superheat for initiating the bubble incipience as well as the waiting period, 

and impair the overall heat transfer performance accordingly. 

Fig. 2(a). Effect of bulk concentration on boiling point elevation 

for POEA 170 in different refrigerants under Tsat = 0C and q = 

30 kW/m2. 

Fig. 2(b). Effect of bulk concentration on boiling point 

elevation for R-134a mixture subject to various lubricants 

under Tsat = 0 C and q = 30 kW/m2. 

2.3 Surface (Interfacial) tension and contact angle 

Fig. 3(a), despite identical chemical formula, R-1234yf possesses the lowest surface tension while R-1234ze 

yields the largest one among these three refrigerants. Fig. 3(b) shows the calculated interfacial tension vs. oil 

concentration. Apparently, the addition of lubricant reduces the interfacial tension and the reduction is especially 

pronounced at low oil concentration. This phenomenon is analogous to surfactant addition. In addition, also as 

disclosed in Fig. 3(a) and Fig. 3(b) where the contact angle is increased with the rise of saturation temperature. 

For the effect of refrigerant on contact angle, the tendency between surface tension and contact angle is different 

for the three refrigerants at different temperature as shown in Fig. 3(a). While for oil concentration effect, the 

tendency between surface tension and contact angle is the same under different oil concentration for specific 

refrigerant as seen in Fig. 3(b). 

Fig. 3(a). Surface tension and contact angle of pure refrigerants 

at different temperature under q = 30 kW/m2. 
Fig. 3(b). Calculated interfacial tension and contact angle of R-

134a/POEA 170 at different concentration and temperature 

under q = 30 kW/m2. 

3. KEY FACTORS INFLUENCE ON BUBBLE DYNAMIC PARAMETERS 

3.1 Bubble size and generating frequency 

Based on our proposed model, bubble diameter is a function of surface tension, contact angle, mixture density, as 

well as Jakob number. While frequency is the reciprocal of bubble cycle time which includes periods of waiting, 

growth, and departure. The calculated results are shown in Figs. 4(a) and 4(b). As shown in Fig. 4(a). R-1234yf 

contains the smallest bubble diameter due to its lower surface tension, while R-1234ze contains the largest 

diameter. With addition of lubricant into refrigerant, the bubble diameters decrease quickly due to appreciably 
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reduction in interfacial tension (Fig. 4(b)). In addition, the increasing trend of bubble frequency is related to the 

reduction of bubble size amid different oil concentrations as appeared in Figs. 4(b). In the present calculation, the 

bubble size decreases slightly when raising the heat flux. 

Fig. 4(b) Bubble radius and frequency of R-134a/lubricant 

mixture at Tsat = 0 C and q = 30 kW/m2. 

Fig. 4(a). Bubble radius and frequency vs. supplied heat flux for 

different refrigerants at 0 C. 

3.2 Bubble density 

The actual meaning of bubble density is the ratio of latent heat contributed from individual bubble to the overall 

heat supplied in specific area covering individual bubble. The calculated results of bubble density are shown in 

Figs. 5(a) and 5(b). By using bubble density, it becomes quite easier to check the heat transfer process. In Figs. 

5(a), bubble density is decreased with the rise of heat flux. These results imply that heat transfer under low heat 

flux is more ‘effective’ than that under high heat flux, due to higher ratio of heat flux contributing to latent heat 

of bubble boiling, rather than to heat liquid mixture. In Fig. 5(a), bubble densities raised appreciably by oil addition, 

but the enhanced degrees are different under various heat flux and oil concentration. At a low heat flux (10 kW/m2) 

and oil = 3%, a plateau of maximum bubble density is encountered. However, at a high heat flux (80 kW/m2), the 

plateau of bubble density moves to oil = 1%. In Fig. 5(a). For R-134a or R-1234ze mixture, the maximum 

augmentation of bubble density is at an oil concentration of 3% at 0 C and 30 kW/m2, but the value of bubble 

density is at the same level for R-1234yf mixture around 0~3%, then it is decreased as the oil concentration is 

further increased. 

Fig. 5(a). Bubble density vs. supplied heat flux for R-

134a/POEA170 at 0 C. 

Fig. 5(b). Bubble density of various refrigerant/POEA170 

mixtures vs. supplied heat flux at 0 C. 

4. OVERALL COMPARISON 
4.1 Time comparison 

In the initial stage, the bubble growth is governed by the momentum interaction between the bubble and the 

surrounding liquid. Consequently, the liquid inertia force casts a significant effect on the bubble growth. In the 

latter stage, however, the bubble growth is limited primarily by heat transfer to the bubble interface and the effect 

of the momentum interaction becomes less important. The viscous drag and the liquid inertia force are estimated 

to be several times smaller than the buoyancy force or the surface tension force when the bubble is about to 

departure. At a saturation temperature of 0 C, Fig. 6(a) illustrated the comparison of overall bubble inception 

time for different refrigerants under various heat fluxes. All bubble inception times decrease as heat flux increase 
due to increasing in frequency when compared with Fig. 4(a). Besides, the tendency of inception time between 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 
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different refrigerants is also reversed to that of frequency. Fig. 6(b) shows the effect of oil concentration on each 

time period. By adding oil into refrigerant, the waiting time is increased due to boiling point elevation, and the 

departure time is also increased due to the rise of drag force. Conversely, the bubble growth time is decreased 

dramatically for a smaller bubble size. In summary, the total time of bubble cycle is reduced when oil is in presence. 

Fig. 6(a). Total bubble inception time vs. supplied heat flux for 

refrigerants at 0C. 

Fig. 6(b). Bubble inception time of R-134a/POEA170 mixture 

subject to oil concentration at 0 C and q = 30 kW/m2. 
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4.2 Temperature comparison 

The calculating results regarding wall superheat of each period are shown in Figs. 7(a) and 7(b). In general, the 

total wall superheat is related to HTC and the bubble density. Fig. 7(a) shows the total wall superheat temperature 

in different refrigerants. For waiting period and growth period, R-1234ze possesses the largest wall superheat 

temperature, while for departure period, R-1234yf contains the highest value of wall superheat. After adding 

lubricant oil into refrigerant, as shown in Fig. 7(b) for R-134a/POEA170 mixture, the wall superheat of waiting 

period and departure period is increased with the rise of oil concentration, while the wall superheat is decreased 

at a lower oil concentration during growth period, but the trend is reversed to an increase wall superheat when the 

oil concentration is up to 10%. The tendency of overall wall superheat is the trade-off and combination result of 
each wall superheat of different period. This is similar to the tendency of bubble density and HTC. 

Fig. 7(a). The wall superheat for each time period subject to 

various refrigerants at Tsat = 0C and q = 30 kW/m2. 

4.3 HTC comparison 

Based on above discussion, overall HTC are shown in Figs. 8(a) ~ 8(g). From Fig. 8(a), HTC is increased with 
the rise of heat flux, and HTC of R-134a is higher than that of R-1234yf, followed by R-1234ze. The calculation 

also showed in Fig. 8(b) that high saturation temperature will promote HTC. Figs. 8(c) ~ 8(e) show HTC in POEA 

170 mixture with R-134a, R-1234ze and R-1234yf, respectively. Basically, the tendency is similar to the 

calculated results of bubble density. In R-134a/POEA 170 (Fig. 8(c)), HTC is enhanced by adding oil up to 5%, 

followed by a persistent decline with further addition of lubricant oil up to 10%. The maximum heat transfer 

enhancement is about 8% at 3% oil concentration. In R-1234ze/POEA 170 as shown in Fig. 8(d), the phenomenon 

is similar, the maximum enhancement is about 9% at 3% oil concentration. On the other hand, the HTC for R-

1234yf/POEA 170 is different from the others, the HTC is decreased with the rise of oil concentration (Fig. 8(e)). 

The HTC is impaired from 5% at 1% oil concentration to 25% at 10% oil concentration at a saturation temperature 

of 0 C. Fig. 8(f) showed the comparison of HTC subject to different type of lubricants for R-134a. The results 

Fig. 7(b). The wall superheat vs. oil concentration for each 

time period for R-134a/POEA170 mixture at Tsat = 0 C and q 

= 30 kW/m2. 
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show that only slight difference in HTC is seen in different type R-134a/lubricant mixtures. By comparing Fig. 

8(c) with Fig. 8(g), it can be found that the saturation temperature plays an important role on lubricant effect on 

HTC. Higher saturated temperature tends to impair the heat transfer performance upon oil addition. 

Based on the aforementioned results, it seems to be inconclusive that oil concentration plays an important role on 
HTC, and the oil type shows only slight influence on it. Actually, oil concentration inside evaporator is related to 

refrigerant solubility in lubricant inside compressor, while oil type act as an important role for solubility. For the 

influence of solubility, volumetric efficiency and total efficiency of the compressor were higher for lubricant 

having a low solubility than that of high solubility at low-speed operation of the compressor. Ideally the lubricant 

should be confined within the compressor. However, some lubricant is entrained and transported along with the 

refrigerant to circulate around the refrigerant circuitry and other system components. During operational transients, 

the lubricant is redistributed throughout the various system components. The equilibrium distribution of lubricant 

depends on fluid properties, phase change processes, flow rates, geometries, and operating conditions, and impose 

influences on HTC. Once lubricant moves out of compressor, lubricant properties will dramatically influence mist 

droplet size, separation efficiency of oil separator, and oil circulation rate (OCR) in liquid line. Finally, oil 

properties, i.e. oil type effect, will affect oil concentration in evaporator, and results in enhancement or impairment 
upon heat transfer performance. Youbi-Idrissi (2003) investigated that the solubility of the refrigerant in oil can 

have a considerable effect on the evaporator performances. For two oils having the same viscosity grade, the 

evaporator performances decrease when the refrigerant-oil solubility increases. Another important property of oil 

will influence OCR drastically, that is miscibility. High miscible lubricant with refrigerant will lead to strong 

combining force, increasing OCR, then may increase or reduce HTC based on overall consideration. Popovic et 

al. (2000) studied the influences of lubricant miscibility on R-134a system performance. Under the same working 

conditions with the same lubricant viscosity grade, R-134a with a miscible POE resulted in 2% to 5% higher COPs 

than R-134a with an immiscible mineral oil. In addition, the cooling capacity with miscible POE was up to 2% 

higher than that of the pair with immiscible mineral oil. 

Fig. 8(a). Heat transfer coefficient vs. supplied heat flux for 

different refrigerants at Tsat = 0 C. 

Fig. 8(b). Heat transfer coefficient vs. supplied heat flux for R-

134a at various temperature. 

Fig. 8(c). Heat transfer coefficient vs. supplied heat flux for R-

134a/POEA mixture at Tsat = 0 C. 

Fig. 8(d). Heat transfer coefficient vs. supplied heat flux for R-

1234ze/POEA mixture at Tsat = 0 C. 
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Fig. 8(e). Heat transfer coefficient vs. supplied heat flux for R-

1234yf/POEA mixture at Tsat = 0 C. 

Fig. 8(f). Heat transfer coefficient of R-134a/lubricant mixture 

at Tsat = 0 C and q = 30 kW/m2. 

Fig. 8(g). Heat transfer coefficient vs. supplied heat flux for R-

134a/POEA mixture at Tsat = 10 C. 

5. CONCLUSIONS 

Calculation results based on the proposed model regarding the influence of lubricant on the pool boiling heat 

transfer performance are discussed in details. Several key factors play an important role in pool boiling heat 

transfer and show drastic influence on bubble parameters and HTC. Based on the foregoing discussion of the 

influences of key parameters on heat transfer performance, the following conclusions are drawn: 

1. Adding lubricant oil into different refrigerants result in different phenomenon. Enhancement of HTC 

may appear in mixing POE with R-134a or R-1234ze mixture, but not in R-1234yf mixture. 

2. High saturation temperature promotes high HTC for pure refrigerant, but the HTC is decreased drastically 

with oil addition. 
3. The maximum heat transfer augmentation with oil-refrigerant mixtures occurs at certain oil concentration. 

Usually, a maximum plateau occurs around 3%~5% oil concentration in R-134a and R-1234ze mixtures. 

Yet the HTCs for all lubricant-refrigerant mixtures are impaired when oil concentration is up to 10%. 

4. Higher heat flux tends to increase HTC, but it also reduced individual bubble density, thereby heat 

transfer contribution by individual latent heat transport is reduced. 

5. Analysis of the key factors like surface coverage concentration, boiling point elevation, drag force and 

Reynolds number indicates that they all directly influence the wall superheat in waiting period, growth 

period, and departure period. These influences mainly attributed to the various refrigerant-lubricant 

properties, especially interfacial properties, such as interfacial tension, contact angle, energy gap and 

affinity. 

6. Various lubricant structures may provide different refrigerant-lubricant properties. Yet these factors 
sometimes offset with each other and result in only a slight difference in bubble size, contact angle, surface 

coverage concentration, and HTC. 
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