1,919 research outputs found

    Topic Grids for Homogeneous Data Visualization

    Full text link
    We propose the topic grids to detect anomaly and analyze the behavior based on the access log content. Content-based behavioral risk is quantified in the high dimensional space where the topics are generated from the log. The topics are being projected homogeneously into a space that is perception- and interaction-friendly to the human experts

    The Benefits and Costs of Informal Sector Pollution Control: Mexican Brick Kilns

    Get PDF
    In developing countries, urban clusters of manufacturers which are "informal"—small-scale, unlicensed and virtually unregulated—can have severe environmental impacts. Yet pollution control efforts have traditionally focused on large industrial sources, in part because the problem is not well-understood. This paper presents a benefit-cost analysis of four practical strategies for reducing emissions from traditional brick kilns in Ciudad Juárez, Mexico. To our knowledge, it is the first such analysis of informal sources. We find very significant net benefits for three of the four control strategies. These results suggest that informal polluters should be a high priority for environmental regulators.

    Modified Mediterranean Diet for Enrichment of Short Chain Fatty Acids: Potential Adjunctive Therapeutic to Target Immune and Metabolic Dysfunction in Schizophrenia?

    Get PDF
    Growing interest in gut and digestive processes and their potential link to brain and peripheral based inflammation or biobehavioral phenotypes has led to an increasing number of basic and translational scientific reports focused on the role of gut microbiota within the context of neuropsychiatric disorders. However, the effect of dietary modification on specific gut metabolites, in association with immune, metabolic, and psychopathological functioning in schizophrenia spectrum disorders has not been well characterized. The short chain fatty acids (SCFA) acetate, butyrate, and propionate, major metabolites derived from fermentation of dietary fibers by gut microbes, interact with multiple immune and metabolic pathways. The specific pathways that SCFA are thought to target, are dysregulated in cardiovascular disease, type II diabetes, and systemic inflammation. Most notably, these disorders are consistently linked to an attenuated lifespan in schizophrenia. Although, unhealthy dietary intake patterns and increased prevalence of immune and metabolic dysfunction has been observed in people with schizophrenia; dietary interventions have not been well utilized to target immune or metabolic illness. Prior schizophrenia patient trials primarily focused on the effects of gluten free diets. Findings from these studies indicate that a diet avoiding gluten benefits a limited subset of patients, individuals with celiac disease or non-celiac gluten sensitivity. Therefore, alternative dietary and nutritional modifications such as high-fiber, Mediterranean style, diets that enrich the production of SCFA, while being associated with a minimal likelihood of adverse events, may improve immune and cardiovascular outcomes linked to premature mortality in schizophrenia. With a growing literature demonstrating that SCFA can cross the blood brain barrier and target key inflammatory and metabolic pathways, this article highlights enriching dietary intake for SCFA as a potential adjunctive therapy for people with schizophrenia

    Telepresence system development for application to the control of remote robotic systems

    Get PDF
    The recent developments of techniques which assist an operator in the control of remote robotic systems are described. In particular, applications are aimed at two specific scenarios: The control of remote robot manipulators; and motion planning for remote transporter vehicles. Common to both applications is the use of realistic computer graphics images which provide the operator with pertinent information. The specific system developments for several recently completed and ongoing telepresence research projects are described

    Nonlinear Schrödinger equation and dissipative quantum dynamics in periodic fields

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1103/PhysRevA.40.4171.The nonlinear dynamics of dissipative quantum systems in periodic fields is studied in the framework of a Gisin-like nonlinear Schrödinger equation with deterministic nonunitary quantum friction terms describing the system-bath couplings. The virtue of this nonunitary evolution is that it is compatible with Dirac’s superposition principle and the Hilbert-space structure of quantum kinematics. Floquet theory and the generalized Van Vleck nearly degenerate perturbation method are used to facilitate both analytical and numerical solutions. Closed-form analytic solutions can be obtained in the long-time average approximation or within the rotating-wave approximation. The methods are applied to the study of dissipative quantum dynamics of two-level systems driven by intense periodic fields. It is found that the system asymptotically approaches a limit cycle (whose orientation is subject to the quantum friction constraint), regardless of the strength of the perturbed fields and the nonlinearity constant, indicating quantum suppression of classical chaos. Further, each point of the limit cycle is found to be an attractor and ψ(t) exhibits a fractal-like evolution pattern in the course of time. The structure of the limit cycle depends strongly upon field intensity and frequency as well as the order of nonlinear multiphoton transitions. The power spectrum of the Bloch vector trajectory exhibits a dynamical symmetry inherent in the dissipative system and in the asymptotic limit cycle. A theoretical analysis is presented for the understanding of the origin and the role of the dynamical symmetry

    Laboratory and theoretical studies of baroclinic processes

    Get PDF
    An understanding is being developed for processes which may be important in the atmosphere, and the definition and analysis of baroclinic experiments utilizing the geophysical fluid flow cells (GFFC) apparatus in microgravity space flights. Included are studies using numerical codes, theoretical models, and terrestrial laboratory experiments. The numerical modeling is performed in three stages: calculation of steady axisymmetric flow, calculation of fastest-growing linear eigenmodes, and nonlinear effects (first, wave-mean flow interactions, then wave-wave interactions). The code can accommodate cylindrical, spherical, or channel geometry. It uses finite differences in the vertical and meridional directions, and is spectral in the azimuthal. The theoretical work was mostly in the area of effects of topography upon the baroclinic instability problem. The laboratory experiments are performed in a cylindrical annulus which has a temperture gradient imposed upon the lower surface and an approximately isothermal outer wall, with the upper and inner surfaces being nominally thermally insulating

    Characterization of damping of materials and structures at nanostrain levels

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1990.Includes bibliographical references (leaves 87-89).by Joseph Ming-Shih Ting.M.S
    • …
    corecore